数字语音信号处理学习笔记——绪论(1)

1.绪论

1.1概述

语言是人类交换信息最方便、最快捷的一种方式,在高度发达的信息社会中,用数字化的方法进行语音的传送、存储、识别、合成和增强等是整个数字化通信网中最重要、最基本的组成部分之一。

语音信号处理技术主要可以应用到:

1) 数字电话通信

2) 高音质的窄带语音通信系统

3) 语言学习机

4) 声控打字机

5) 自动翻译机

6) 智能机器人

7) 新一代计算机语音智能终端

8) 许多军事上的应用

语音信号处理是一门新兴的边缘科学,它是语音学数字信号处理两个学科相结合的产物。它和认知科学、心理学、语音学、计算机科学、模式识别人工智能等学科有着紧密的联系。

语音信号处理的目的是要得到某些语音特征参数以便高效地传输或存储;或者是通过某种处理运算以达到某种用途的要求,例如人工合成语音、辨识出讲话者、识别出讲话的内容等。

     随着现代科学和计算机技术的发展,除了人与人之间的自然语言的通信方式之外,人机对话及智能机器等领域也开始使用语言。通常认为,语音信息的交换大致上可以分为三大类:

1) 人与人之间的语音通信:包括语音压缩与编码、语音增强等

2) 第一类人机语言通信问题,指的是机器讲话、人听话的研究,即语音合成

3) 第二类人机语音通信问题,指的是人讲话、机器听话的情况,即语音识别和理解

1.2 语音信号处理的发展

     1876年:贝尔电话的发明,该技术首次用声电、电声转换技术实现了远距离的语音传输。

1939年:Homer Dudley提出并研制成功的第一个声码器,从此奠定了语音产生模型的基础。

19世纪60年代:亥姆霍兹应用声学方法对元音和歌唱进行了研究,从而奠定了语言的声学基础。

20世纪40年代:一种语言声学的专用仪器——语谱图仪问世了。

1948年:美国Haskins实验室研制成功“语音回放机”,该仪器可以把手工绘制在薄膜上的语谱图自动转换成语音,                     并进行语音合成

20世纪50年代:语言产生的声学理论开始有了系统的论述。

随着计算机的出现,语音信号处理的研究工作得到了计算机技术的帮助,使得过去受人力、时间限制的大量的语音统计分析工作,得以在电子计算机上进行。在此基础上,语音信号处理不论在基础研究方面,还是在技术应用方面,都取得了突破性的发展。

下面分别论述语音信号处理的三个主要分支(语音合成技术、语音编码和语音识别技术)的发展和现状。

1.2.1 语音合成

最早的合成器:

1835年:W.von Kempelen发明,经Weston改进的机械式会讲话的机器。该机器完全模仿人的发音生理过程,分别用风箱、特别设计的哨和软管来模拟肺部的空气动力、模拟口腔。

最早的电子式语音合成器:

1939年:Homer Dudley发明的声码器,它不是简单地模拟人的生理过程,而是通过电子线路来实现基于语音产生的源-滤波器理论。

但真正具有实用意义的近代语音合成技术是随着计算机技术和数字信号处理技术的发展而发展起来的,主要是采用计算机产生高清晰度、高自然度的连续语音。

早期的研究主要采用参数合成方法:

1973年:Holmes发明的并联共振峰合成器

1980年:Klatt发明的串/并联共振峰合成器

最具代表性的文本转换系统:

1987年:美国DEC公司的DECtalk

自20世纪80年代末期至今,语音合成技术又有了新的进展,特别是1990年提出的基因同步叠加(PSOLA)方法,使基于时域波形拼接方法合成的语音的音色和自然度大大提高。

20世纪90年代:基于PSOLA技术的法语、德语、英语、日语等语种的文语转换系统都已经研制成功。

我国的汉语语音合成研究起步较晚,但从20世纪80年代初就基本上与国际研究同步发展。大致也经历了共振峰合成、LPC合成到应用PSOLA技术的过程。

现阶段语音合成的最大进展是已经能实时地将任意文本转换成连续可懂的自然语句输出。

数字语音信号处理学习笔记——绪论(1)

时间: 2024-08-09 06:35:14

数字语音信号处理学习笔记——绪论(1)的相关文章

数字语音信号处理学习笔记——绪论(2)

1.2.2 语音编码 语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以节省频率资源. 语音编码技术的鼻祖: 研究开始于1939年军事保密通信的需要,贝尔电话实验室的Homer Dudley提出并实现了在低频带宽电话电报电缆上传输语音信号的通道声码器. 20世纪70年代:国际电联(ITU-T,原CCITT)64kbit/s脉冲编码调制(PCM)语音编码算法的G.711建议,它被广泛应用于数字通信.数字交换机等领域,从而占据统治地位. 1980年:美国政府公布了一种2.4kbit

数字语音信号处理学习笔记——语音信号的同态处理(2)

5.4 复倒谱和倒谱 定义       设信号x(n)的z变换为X(z) = z[x(n)],其对数为: (1) 那么的逆z变换可写成: (2) 取(1)式则有 (3) 于是式子(2)则可以写成       (4) 则式子(4)即为信号x(n)的复倒谱的定义.因为一般为复数,故称为复倒谱.如果对的绝对值取对数,得 (5) 则为实数,由此求出的倒频谱c(n)为实倒谱,简称为倒谱,即 (6) 在(3)式中,实部是可以取唯一值的,但对于虚部,会引起唯一性问题,因此要求相角为w的连续奇函数. 性质: 为

数字语音信号处理学习笔记——语音信号的数字模型(3)

2.4 语音的感知       2.4.1 几个概念       语音的听觉感知是一个复杂的人脑-心理过程.对听觉感知的研究还很不成熟.听觉感知的试验主要还在测试响度.音高和掩蔽效应等.人耳听觉界限的范围大约为20Hz~20kHz.在频率范围低端,感觉声音变成低频脉冲串,在高端感觉声音减小直至完全听不到一点儿声响.语音感知的强度范围是0~130dB声压级,声音强度太高,感到难以忍受,强度太低则感到寂静无声. 1.响度 这是频率和强度级的函数.通常用响度(单位为宋)和响度级(单位为方)来表示. 人

数字语音信号处理学习笔记——语音信号的短时时域分析(1)

3.1 概述 语音信号是一种非平稳的时变信号,它携带着各种信息.在语音编码.语音合成.语音识别和语音增强等语音处理中都需要提取语音中包含的各种信息.一般而言语音处理的目的有两种:一种是对语音信号进行分析,提取特征参数,用于后续处理:另一种是加工语音信号,例如在语音增强中对含噪语音进行背景噪声抑制,以获得相对"干净"的语音:在语音合成方中需要对分段语音进行拼接平滑,获得主观音质较高的合成语音,这方面的应用同样是建立在分析并提取语音信号信息的基础上的.总之,语音信号分析的目的就在于方便有效

数字语音信号处理学习笔记——同态处理语音信号(1)

5.1 概要 进行处理的方法,它能将两个信号通过乘法合成的信号,或通过卷积合成的信号分开. 对于语音信号.我们的目的是要从声道冲激对应与激励分量的卷积中分开各原始分量. 由卷积结果求得參与卷积的各个信号分量是涉及数字信号处理理论的一项任务,称为"解卷积"或简称"解卷". 对语音信号进行同态分析后.将得到语音信号的倒谱參数,因此同态分析也称为倒谱分析或同态处理. 5.2 叠加原理和广义叠加原理      对于一个线性系统来说,其输入输出的关系服从叠加原理.叠加原理能够

数字语音信号处理学习笔记——语音信号的短时频域分析(2)

4.3 滤波器的解释       1.短时傅里叶变换的滤波器实现形式一 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" > watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvam9qb3poYW5nanU=/font/5a6L

编译原理学习笔记 -- 绪论1

1. 语言处理器 语言处理系统 _________ 经过预 _______ 源程序 --> |预处理器| --> 处理的 --> |编译器| --> 目标汇编程序 -------- 源程序 ------- _______ 可重定位的 ______________ --> |汇编器| --> 机器代码 --> |链接器/加载器| --> 目标机器代码 ------- -------------- ↑ 库文件/可重定位对象文件 预处理器:把源程序聚合在一起,并宏

数据结构学习笔记——绪论

数据结构学习笔记——绪论 为了更贴切的描述一种数据结构,通常采用二元组表示:(对于一种数据结构其逻辑结构唯一) B=(D,R)其中,B是一种数据结构,它由数据元素的集合D和D上二元关系的集合R所组成.即D={ di | 1 <= i<= n, n > 0}R={ rj | 1 <= j<= n, n > 0}D 上的一个关系r是序偶的集合,对于r中任一序偶<x,y>(x,y属于集合D),把x叫做偶序第一节点,把y叫做偶序第二结点,又称序偶的第 一结点为第二结

[离散时间信号处理学习笔记] 11. 连续时间信号的采样与重构

这一节主要讨论采样定理,在<傅里叶变换及其应用及其学习笔记>中有进行过推导与讲解,因此下面的内容也大同小异.不过如果是从<离散时间信号处理>这一本书的内容开始学习到这一节,则应先学习本文内容所需要的一些前置知识:傅里叶变换(连续时间),主要用到的是脉冲函数$\delta$,以及周期脉冲函数Ш的傅里叶变换与相关性质. 周期采样 假设有连续信号$x_c(t)$,我们需要通过对该信号进行采样才能得到离散信号,即样本序列$x[n]$.连续信号与离散信号有以下关系: $x[n] = x_c(