zoj 2314 Reactor Cooling (无源汇上下界可行流)

Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314


Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge


The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

Sample Input

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

Sample Input

NO

YES
1
2
3
2
1
1

m根管道,构成一个循环体,每时每刻 管道要满足 流进的=流出的

每根管道有流量下限和上限

求是否能够成这样一个循环体,如果能,输出每条管道的流量

(不知道是不是最大,反正他们都是最大。。。)

无源汇上下界可行流的模板题

推荐一篇写的相当好的博客http://www.cnblogs.com/liu-runda/p/6262832.html

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define N 250
#define M 100000
using namespace std;
int a[N],low[M],sum,tot;
int front[N],next[M],to[M],cap[M];
int src,dec;
int cur[N],lev[N];
queue<int>q;
void add(int u,int v,int w)
{
    to[++tot]=v; next[tot]=front[u]; front[u]=tot; cap[tot]=w;
    to[++tot]=u; next[tot]=front[v]; front[v]=tot; cap[tot]=0;
}
bool bfs()
{
    for(int i=src;i<=dec;i++) lev[i]=-1,cur[i]=front[i];
    while(!q.empty()) q.pop();
    lev[src]=0;
    q.push(src);
    int now;
    while(!q.empty())
    {
        now=q.front(); q.pop();
        for(int i=front[now];i;i=next[i])
         if(cap[i]>0&&lev[to[i]]==-1)
         {
              lev[to[i]]=lev[now]+1;
              if(to[i]==dec) return true;
              q.push(to[i]);
         }
    }
    return false;
}
int dfs(int now,int flow)
{
    if(now==dec) return flow;
    int rest=0,delta;
    for(int & i=cur[now];i;i=next[i])
     if(cap[i]>0&&lev[to[i]]>lev[now])
     {
          delta=dfs(to[i],min(flow-rest,cap[i]));
          if(delta)
          {
                cap[i]-=delta; cap[i^1]+=delta;
              rest+=delta; if(rest==flow) break;
          }
     }
     if(rest!=flow) lev[now]=-1;
     return rest;
}
int dinic()
{
    int tmp=0;
    while(bfs())
    tmp+=dfs(src,2e9);
    return tmp;
}
int main()
{
    int T ,n,m;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        src=0,dec=n+1;
        tot=1; sum=0;
        memset(front,0,sizeof(front));
        memset(a,0,sizeof(a));
        int f,t,u,d;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d%d",&f,&t,&u,&d);
            low[i]=u;
            a[f]-=u; a[t]+=u;
            add(f,t,d-u);
        }
        for(int i=1;i<=n;i++)
        if(a[i]<0) add(i,dec,-a[i]);
        else if(a[i]>0) add(src,i,a[i]),sum+=a[i];
        if(dinic()==sum)
        {
            puts("YES");
            for(int i=1;i<=m;i++) printf("%d\n",low[i]+cap[i<<1|1]);
        }
        else puts("NO");
    }
}
时间: 2024-10-08 16:47:17

zoj 2314 Reactor Cooling (无源汇上下界可行流)的相关文章

ZOJ--2314--Reactor Cooling【无源汇上下界可行流】

链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:某恐怖组织要建立一个核反应堆,他们需要设计一个冷却系统,n个点由m个管子连接,为使液体循环流动,每个节点的总流入量需要等于总流出量,现告诉你每根管子的最小流量及最大流量及它们连接的两点(有向),问是否存在可行流,如存在,输出每个管子的流量. 有上下界的网络流分为四种:无源汇的上下界可行流.有源汇的上下界可行流.有源汇的上下界最大流.有源汇的上下界最小流,这道

hdu 4940 Destroy Transportation system (无源汇上下界可行流)

Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)http://acm.hdu.edu.cn/showproblem.php?pid=4940 Problem Description Tom is a commander, his task is destroying his enemy’s transportatio

ZOJ 2314 Reactor Cooling 无源汇有上下界网络流

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意:给出N个点,M条边的有向图,每条边的有上下界规定,问是否存在一个可行流满足条件,如果满足输出YES并输出每条边的流量. 如果不满足输出NO. 根据周源的<一种简易的方法求解流量有上下界的网络中网络流问题> 无源汇上下界网络流的做法是: 设边u->v的下界是B(u,v),上界是C(u,v). 设M(i)为对于i结点的流入i的下界总和-流出i的下界总

ZOJ 2314 Reactor Cooling(无源汇有上下界可行流)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2314 题目大意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质. 并且满足每根pipe一定的流量限制,范围为[Li,Ri].即要满足每时刻流进来的不能超过Ri(最大流问题),同时最小不能低于Li. 解题思路: 转自:https://www.cnbl

有源汇上下界可行流(POJ2396)

题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流即可. 具体做法可以从汇点向源点连容量为正无穷的边,转成无源汇上下界可行流. 然后可以新建超级源汇,对于一条下界为l,上界为r的边(x,y),从超级源点向y,x向超级汇点连容量为l的边,x向y连容量为r-l的边. 如果那些容量为l的边没满流,则无解. #include <cstdio> #incl

poj2396有源汇上下界可行流

题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无源汇上下界可行流建边,然后添加一条从t到s的容量为inf的边,从超级源到超级汇跑一边最大流,看流量是不是等于新加边的流量和,注意这题有可能输入的数据会有锚段,那么我们需要特判一下是否有矛盾出现 还要注意的一点是:我刚开始是用string+cin读入的字符,但是出现了问题,导致我代码下面的那组数据不能

POJ2396&amp;ZOJ1994--Budget【有源汇上下界可行流】

链接:http://poj.org/problem?id=2396 题意:给一个n*m的矩阵,给出每行的总和以及每列的总和,再给出某些位置的最小或最大限制,问是否存在可能的矩阵,如果存在输出一种矩阵信息. 思路:这是一个有源汇的上下界可行流,对于这种题,从汇点连一条弧到源点,容量为INF,这不会影响流量平衡条件,并且此时原图转换为了无源汇的上下界可行流,剩下的做法和无源汇一样. 建图:原图源点src连向每个行顶点,容量为每行的和,每个列顶点连向汇点,容量为每个列顶点的和,行顶点和列顶点间也各有一

poj2396 Budget(有源汇上下界可行流)

[题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s,Xi,sumXi,sumXi)(Yi,t,sumYi,sumYi)(Xi,Yj,down[i][j],up[i][j]). 则问题就是求一个有源汇点st的上下界可行流. 类似于 无源无汇上下界可行流 ,添加附加源汇点ST,边权转化为up-down,由ST向每个点连边保持流量平衡.然后添加(t,s,

算法复习——有源汇上下界可行流(bzoj2396)

题目: Description We are supposed to make a budget proposal for this multi-site competition. The budget proposal is a matrix where the rows represent different kinds of expenses and the columns represent different sites. We had a meeting about this, so