Spark版本定制第7天:JobScheduler内幕实现和深度思考

本期内容:

1 JobScheduler内幕实现

2 深度思考

  一切不能进行实时流处理的数据都是无效的数据。在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下。

  Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序。如果可以掌握Spark streaming这个复杂的应用程序,那么其他的再复杂的应用程序都不在话下了。这里选择Spark Streaming作为版本定制的切入点也是大势所趋。

在job生成方法中JobGenerator中会每隔batchInterval时间会动态的生成JobSet提交给JobScheduler

private def generateJobs(time: Time) {
  // Set the SparkEnv in this thread, so that job generation code can access the environment
  // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
  // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
  SparkEnv.set(ssc.env)
  Try {
    jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
    graph.generateJobs(time) // generate jobs using allocated block
  } match {
    case Success(jobs) =>
      val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
      jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos)) //提交jobSet
    case Failure(e) =>
      jobScheduler.reportError("Error generating jobs for time " + time, e)
  }
  eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}

  在submitJobSet方法中,会为每个job生成一个JobHandler,交给jobExecutor运行。

def submitJobSet(jobSet: JobSet) {
  if (jobSet.jobs.isEmpty) {
    logInfo("No jobs added for time " + jobSet.time)
  } else {
    listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
    jobSets.put(jobSet.time, jobSet)
    jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
    logInfo("Added jobs for time " + jobSet.time)
  }
}

  

private val jobExecutor =
  ThreadUtils.newDaemonFixedThreadPool(numConcurrentJobs, "streaming-job-executor")

  在生成的线程池中,利用生成的JobHandler来处理事件。在这里面JobHandler会调用job.run(),它将触发Job.func的真正执行!这里job便开始运行。

备注:

资料来源于:DT_大数据梦工厂(Spark发行版本定制)

更多私密内容,请关注微信公众号:DT_Spark

如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580

时间: 2024-10-06 07:18:29

Spark版本定制第7天:JobScheduler内幕实现和深度思考的相关文章

(版本定制)第7课:Spark Streaming源码解读之JobScheduler内幕实现和深度思考

本期内容: 1.JobScheduler内幕实现 2.JobScheduler深度思考 JobScheduler是Spark Streaming的调度核心,地位相当于Spark Core上调度中心的DAG Scheduler,非常重要! JobGenerator每隔Batch Duration时间会动态的生成JobSet提交给JobScheduler,JobScheduler接收到JobSet后,如何处理呢? 产生Job /** Generate jobs and perform checkpo

Spark版本定制七:Spark Streaming源码解读之JobScheduler内幕实现和深度思考

本期内容: 1,JobScheduler内幕实现 2,JobScheduler深度思考 摘要:JobScheduler是Spark Streaming整个调度的核心,其地位相当于Spark Core上的调度中心中的DAGScheduler!           一.JobScheduler内幕实现 问:JobScheduler是在什么地方生成的? 答:JobScheduler是在StreamingContext实例化时产生的,从StreamingContext的源码第183行中可以看出:    

Spark 定制版:007~Spark Streaming源码解读之JobScheduler内幕实现和深度思考

本讲内容: a. JobScheduler内幕实现 b. JobScheduler深度思考 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上节课,我们以JobGenerator类为重心,为大家左右延伸,解密Job之动态生成:并总结出了Job之动态生成的三大核心: a. JobGenerator: 负责Job生成 b. JobSheduler:负责Job调度 c. ReceiverTracker:获取元数据 如Job动态生成图: 开讲 由上

Spark版本定制第3天:通过案例对SparkStreaming透彻理解之三

本期内容: 1 解密Spark Streaming Job架构和运行机制 2 解密Spark Streaming 容错架构和运行机制 一切不能进行实时流处理的数据都是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下. Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应

Spark版本定制第2天:通过案例对SparkStreaming透彻理解之二

本期内容: 1 解密Spark Streaming运行机制 2 解密Spark Streaming架构 一切不能进行实时流处理的数据都是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下. Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序.如果可以掌握Spark

Spark版本定制第1天:通过案例对SparkStreaming透彻理解之一

本期内容: 1 Spark Streaming另类在线实验 2 瞬间理解Spark Streaming本质 在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下.这里选择Spark Streaming作为版本定制的切入点也是大势所趋. 小技巧:将Batch interval放大,相当于看到了Streaming的慢放版本,可以更清楚它的各个环节,这里以黑名单过滤程序

Spark版本定制第13天:Driver容错

本期内容 1.ReceivedBlockTracker容错安全性 2.DStreamGraph和JobGenerator容错安全性 一切不能进行实时流处理的数据都是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下. Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用

Spark版本定制第5天:案列解析Spark Streaming运行源码

本期内容: 1 在线动态计算分类最热门商品案例回顾与演示 2 基于案例贯通Spark Streaming的运行源码 一切不能进行实时流处理的数据都是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下. Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序.如果可以掌

Spark版本定制第6天:Job动态生成和深度思考

本期内容: 1 Job动态生成 2 深度思考 一切不能进行实时流处理的数据都是无效的数据.在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下. Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序.如果可以掌握Spark streaming这个复杂的应用程序,那么其他的再复杂的