模-数(A/D)转换器

一、A/D转换的基本原理
  在一系列选定的瞬间对模拟信号进行取样,然后再将这些取样值转换成输出的数字量,并按一定的编码形式给出转换结果。
  整个A/D转换过程大致可分为取样、量化、编码三个过程。
二、取样-保持电路

  取样-保持电路的基本形式如上图,图中T为N沟道增强型MOS管,作模拟开关使用。

  当取样控制信号Vi为高电平时T导通,输入信号Vi经电阻R1和T向电容CH充电。若取R1=RF,且视运算放大器为理想运算放大器,则充电结束后,Vo=Vch=-Vi

  当Vi返回低电平以后,MOS管T截止,由于CH上的电压在一段时间内基本保持不变,所以Vo也保持不变,取样结果被保存下来(CH的漏电流越小,运算放大器的输入阻抗越高,Vo保持的时间也越长)。

  该电路在取样过程中需要输入电压经R1和T向电容CH充电,这就限制了取样速度,而通过减少R1的办法提高取样速度又必将降低电路的输入阻抗。

三、并联比较型A/D转换器

  并联比较型A/D转换器电路结构图如下,它由电压比较器、寄存器和代码转换电路三部分组成。输入为0-Vref间的模拟电压,输出为3位二进制数码d2d1d0。

  

  电压比较器中量化电平的方式:采用电阻链将参考电压Vref分压,得到(1/15)Vref到(3/15)Vref之间7个比较电平,量化单位为(2/15)Vref,将这7个比较电平分别接到7个电压比较器C1-C7的输入端作为比较基准,同时将输入的模拟电压同时加到每个比较器的另一个输入端,与这7个比较基准进行比较。

  若Vi<(1/15)Vref,则所有比较器的输出全是低电平,CLK上升沿到来后寄存器中所有的触发器都被置为0状态

  若(1/15)Vref<Vi<(3/15)Vref,则只有C1输出为高电平,CLK上升沿到达后FF1被置1,其余触发器被置0

  以此类推,便可列出Vi为不同电压时寄存器的状态

  并联比较型A/D转换器的最大优点是转换速度快,其一次转换所需的时间只包括一级触发器的翻转时间和三级门电路的传输延迟时间。但,从电路可知,输出为n位二进制代码的转换器应当有(2^n)-1个电压比较器和(2^n)-1个触发器,电路的规模随着输出代码位数的增加而急剧膨胀,电路更加复杂。

四、反馈比较型A/D转换器

  反馈比较型A/D转换器经常采用的有计数型和逐次渐近型两种方案

1、计数型

如下图,转换器由比较器C、D/A转换器、计数器、脉冲源、控制门G以及输出寄存器等几部分组成。

步骤一:转换前先用复位信号将计数器置零,而且转换控制信号应停留在VL=0的状态。此时门G被封锁,计数器不工作。由于此时计数器加给D/A转换器的是全0的数字信号,故Vo=0。

步骤二:当VL变成高电平时开始转换,脉冲源发出的脉冲经过门G加到计数器的时钟信号输入端CLK,计数器开始做加法计数。

步骤三:随着计数的进行,D/A转换器输出的模拟电压Vo也不断增加。当Vo增加至Vo=Vi时,Vb=0,将门G封锁、计数器停止计数。此时计数器中所存的数字就是所求的输出数字信号。

  因为在转换过程中计数器中的数字不停地变化,所以不宜将计数器的状态直接作为输出信号,为此在输出端设置了输出寄存器,在每次转换完成以后,用转换控制信号VL的下降沿将计数器输出的数字置入输出寄存器中,以输出寄存器的状态作为最终的输出信号。

  这种方案的缺点是转换时间太长,当输出为n位二进制数码时,最初的转换时间可达(2^n)-1倍的时钟信号周期。该方案电路比较简单,适用于对转换速度要求不高的场合。

2、逐次渐进型

如下图,转换器由比较器C、D/A转换器、寄存器、时钟脉冲源、控制逻辑等5部分组成。

步骤一:转换前先将寄存器清零,所以加给D/A转换器的数字量也是全0;
步骤二:转换控制信号VL变成高电平时开始转换,时钟信号首先将寄存器的最高位置成1,使寄存器的输出为100...0;
步骤三:输出的数字量被D/A转换器转换成相应的模拟电压,并送到比较器与输入信号Vi进行比较。如果Vo>Vi,说明数字过大,则该1应去掉,如果Vo<Vi,说明数字还不够大,这个1应保留;
步骤四:按同样的方法将次高位置1,并比较Vo与Vi的大小以确定这一位的1是否应该保留,这样逐位比较下去,直到最低位比较完成为止。此时寄存器里所存的数码就是所求的数字量。
  逐次渐近型比较A/D转换器转换速度比计数型A/D转换器速度高很多,而且在输出位数时,电路规模要比并联比较型的小得多,因此逐次渐进型A/D转换器是目前集成A/D转换器产品中用的最多的一种电路。
五、双积分型A/D转换器
  如下图,转换器包括积分器、比较器、计数器、控制逻辑、时钟信号源等部分

  

  步骤一:转换开始前(转换控制信号VL=0),先将计数器清零,并接通开关S0,使积分电容C完全放电;

  步骤二:令开关S1合到输入信号电压Vi的一侧,积分器对Vi进行固定时间T1的积分,则

  

  故可得数字量:

  

  若取T1为Tc的整数倍,则

  

  双积分型A/D转换器的优点是工作性能比较稳定,抗干扰能力强,但由于先后进行了两次积分,因此其工作速度低,一般都在每次几十次以内。

  另,双积分型A/D转换器转换精度受计数器位数、比较器的灵敏度、运算放大器、比较器的零点漂移、积分电容的漏电、时钟频率的瞬时波动等多种因素的影响,因此为提高转换精度仅靠增加计数的位数是远不够的。实用电路中为消除运放、比较器的零点漂移,常增加零点漂移自动补偿电路,为防止时钟信号频率在转换过程中发生波动,可以使用石英晶体振荡器作为脉冲源。

时间: 2024-11-07 12:35:38

模-数(A/D)转换器的相关文章

S3C2440 ADC(模/数转换器)

本文部分内容转自zhaocj的博客,感谢!地址为:http://blog.csdn.net/zhaocj/article/details/5495730 A/D转换,又称为模/数转换,是将模拟量信号转换为计算机能够处理的数字信号.S3C2440集成了8通道10位CMOS A/D转换器,最大转换率为2.5MHz A/D转换器时钟下的500KSPS.A/D转换器支持片上采样-保持功能和掉电模式的操作. 有如下特性: 分辨率:10位 差分线性误差:±1.0LSB 积分线性误差:±2.0LSB 最大转换

如何来看单片机外设A/D转换器ADC0804时序图

如图,为单片机AD转换器的一种: ADC0804单片集成A/D转换器.它采用CMOS工艺20引脚集成芯片,分辩率为8位,转换时间为100μs,输入电压范围为0-5V.芯片内具有三态输出数据锁存器,可直接接在数据总线上. 各引脚名称及作用如下: VIN(+),VIN(-)--两模拟信号输入端,用以接收单极性.双极性和差模输入信号. DB7-DB0--具有三态特性数字信号输出口. AGND--模拟信号地. DGND--数字信号地. CLK--时钟信号输入端. CLKR--内部时钟发生器的外接电阻端,

E-SATA接口

1.VGA接口 VGA接口就是显卡上输出模拟信号的接口,也叫D-Sub接口,其实就是显示转移的接口,比如连接投影仪.连接电视等等.从外观上讲,VGA接口是一种D型接口,上面共有15针空,分成三排,每排五个. 其中,除了2跟NC(Not Connect)信号.3根显示数据总线和5个GND信号,比较重要的是3根RGB彩色分量信号和2根扫描同步信号HSYNC和VSYNC针.目前大多数计算机与外部显示设备之间都是通过模拟VGA接口连接,计算机内部以数字方式生成的显示图像信息,被显卡中的数字/模拟转换器转

宽带接入

宽带是相对传统拨号上网而言,尽管目前没有统一标准规定宽带的带宽应达到多少,但依据大众习惯和网络多媒体数据流量考虑,网络的数据传输速率至少应达到256Kbps才能称之为宽带,其最大优势是带宽远远超过56Kbps拨号上网方式. 1分类 其实并没有很严格的定义,一般是拨号上网速率的上限 56Kbps为分界,将 56Kbps及其以下的接入称为“窄带”,之上的接入方式则归类于“宽带”. 2种类 ADSL 定义:ADSL是英文Asymmetrical Digital Subscriber Loop(非对称数

[转]电脑显卡4种接口类型:VGA、DVI、HDMI、DP

电脑显卡全称显示接口卡(Video card,Graphics card),又称为显示适配器(Video adapter),是个人电脑最基本组成部分之一.对于显卡接口类型,主要包括VGA.dvi.HDMI.dp这四种比较常见的接口,当然还有其他的. VGA接口是最常见,也就是我们通常的电脑显示器连接主机的那种,VGA接口是一种D型接口,上面共有15针,分成三排,每排五个.并且VGA接口扩展性比较强,可以轻松与DVI接口进行转换,VGA接口介绍如下图: 通过上面介绍了VGA接口包括15个针脚,那么

Linux音频编程指南

Linux音频编程指南 虽然目前Linux的优势主要体现在网络服务方面,但事实上同样也有着非常丰富的媒体功能,本文就是以多媒体应用中最基本的声音为对象,介绍如何在Linux平台下开发实际的音频应用程序,同时还给出了一些常用的音频编程框架. 一.数字音频 音频信号是一种连续变化的模拟信号,但计算机只能处理和记录二进制的数字信号,由自然音源得到的音频信号必须经过一定的变换,成为数字音频信号之后,才能送到计算机中作进一步的处理. 数字音频系统通过将声波的波型转换成一系列二进制数据,来实现对原始声音的重

嵌入式声卡应用分析

Linux的音频输入输出是通过/dev/dsp设备的,但对于这些声音信号的处理则是通过/dev/mixer设备来完成的.(周学伟) 一.数字音频 音频信号是一种连续变化的模拟信号,但计算机只能处理和记录二进制的数字信号,由自然音源得到的音频信号必须经过一定的变换,成为数字音频信号之后,才能送到计算机中作进一步的处理. 数字音频系统通过将声波的波型转换成一系列二进制数据,来实现对原始声音的重现,实现这一步骤的设备常被称为模/数转换器(A/D).A/D转换器以每秒 钟上万次的速率对声波进行采样,每个

Android Camera HAL浅析

1.Camera成像原理介绍 Camera工作流程图 Camera的成像原理可以简单概括如下: 景物(SCENE)通过镜头(LENS)生成的光学图像投射到图像传感器(Sensor)表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字 图像信号,再送到数字信号处理芯片(DSP)中加工处理,再通过IO接口传输到CPU中处理,通过DISPLAY就可以看到图像了. 电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)接收光学镜头传递来的影像,经模/数转换器(A/D)转换成数字信号,经过编码后

stm32之ADC

将模拟量转换为数字量的过程称为模式(A/D)转换,完成这一转换的期间成为模数转换器(简称ADC);将数字量转换为模拟量的过程为数模(D/A)转换,完成这一转换的器件称为数模转换器(简称DAC). 模拟信号的采集与处理: 数据采集系统由模拟信号采集.A/D转换.数字信号处理三大部分组成: A/D转换的原理: A/D转换中通常要完成采样保持和量化编码两方面.所以AD转换是需要转换时间的,一般AD转换的时间在uS级别:(量化编码所需要的时间决定采样保存的时间),如下图: 将采样后得到的样点幅值转换为数