MATLAB中FFT的使用方法

一.调用方法

X=FFT(x);

X=FFT(x,N);

x=IFFT(X);

x=IFFT(X,N)

用MATLAB进行谱分析时注意:

(1)函数FFT返回值的数据结构具有对称性。

例:
N=8;
n=0:N-1;
xn=[4 3 2 6 7 8 9 0];
Xk=fft(xn)

输出:

Xk =

39.0000          -10.7782 + 6.2929i        0 -5.0000i   4.7782 - 7.7071i  5.0000            4.7782 + 7.7071i        0 + 5.0000i       -10.7782- 6.2929i

Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例

例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;
fs=100;N=128;   %采样频率和数据点数
n=0:N-1;t=n/fs;   %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N);    %对信号进行快速Fourier变换
mag=abs(y);     %求得Fourier变换后的振幅
f=n*fs/N;    %频率序列
subplot(2,2,1),plot(f,mag);   %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=128');grid on;
%对信号采样数据为1024点的处理
fs=100;N=1024;n=0:N-1;t=n/fs;
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号
y=fft(x,N);   %对信号进行快速Fourier变换
mag=abs(y);   %求取Fourier变换的振幅
f=n*fs/N;
subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;
subplot(2,2,4)
plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅
xlabel('频率/Hz');
ylabel('振幅');title('N=1024');grid on;

结果:

fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。

例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:

(1)数据个数N=32,FFT所用的采样点数NFFT=32;

(2)N=32,NFFT=128;

(3)N=136,NFFT=128;

(4)N=136,NFFT=512。

clf;fs=100; %采样频率
Ndata=32; %数据长度
N=32; %FFT的数据长度
n=0:Ndata-1;t=n/fs;   %数据对应的时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);   %时间域信号
y=fft(x,N);   %信号的Fourier变换
mag=abs(y);    %求取振幅
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=32');grid on;
Ndata=32;   %数据个数
N=128;     %FFT采用的数据长度
n=0:Ndata-1;t=n/fs;   %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N; %真实频率
subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=32 Nfft=128');grid on;
Ndata=136;   %数据个数
N=128;     %FFT采用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N;   %真实频率
subplot(2,2,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=128');grid on;
Ndata=136;    %数据个数
N=512;    %FFT所用的数据个数
n=0:Ndata-1;t=n/fs; %时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
y=fft(x,N);
mag=abs(y);
f=(0:N-1)*fs/N;   %真实频率
subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅
xlabel('频率/Hz');ylabel('振幅');
title('Ndata=136 Nfft=512');grid on;

结果:

结论:

(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。

(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。

(3)FFT程序将数据截断,这时分辨率较高。

(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。

对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。

例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)

代码略,直接看结果:

结论:

(1)数据点过少,几乎无法看出有关信号频谱的详细信息;

(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。

(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。

可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。

参考资料:

1.《数字信号处理的MATLAB实现》万永革主编

2. 博文:http://blog.163.com/fei_lai_feng/blog/static/9289962200971751114547/

时间: 2024-10-03 19:05:32

MATLAB中FFT的使用方法的相关文章

[转载]MATLAB中FFT的使用方法

http://blog.163.com/fei_lai_feng/blog/static/9289962200971751114547/ 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性. 例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn) →Xk = 39.0000

Python 之 h5py 读取 matlab 中 .mat 文件 cell 方法浅析

采用 Python 读取 matlab 中 .mat文件的方法有很多,中外文的论坛上都不少,相关博文 可见:Python 从 mat 文件的读写和存储 到 h5py 文件包. 详址:http://blog.csdn.net/u013630349/article/details/47090299 但是,在读取matlab文件的时候,往往不是一层 .mat 就足以解决问题的,.mat 文件中可能是存放的 cell(100*200) 数据, cell(100*200)数据中又分为多个 cell .那么

MATLAB中fft

一般的fft需要将点数补成2的整数次幂,MATLAB中有fft函数,输入N点序列则输出也是N点序列,其中N不一定为2的整数次幂.所以会疑惑MATLAB做的fft和N点序列对应的dft是否一样.经过验证,MATLAB中对N点序列做fft的结果与N点dft的结果是完全一样的,没有对N点序列进行补0后再做操作. 下面是MATLAB代码和结果. n = 0: 49; A = 444.128; a = 50 * sqrt(2.0) * pi; w0 = 50 * sqrt(2.0) * pi; T = 0

[转载]Matlab中fft与fftshift命令的小结与分析

http://blog.sina.com.cn/s/blog_68f3a4510100qvp1.html 注:转载请注明出处——by author. 我们知道Fourier分析是信号处理里很重要的技术,matlab提供了强大的信号处理能力,但是有一些细节部分需要我们注意. 记信号f(t)的起始时间为t_start, 终止时间为t_end, 采样周期为t_s, 可以计算信号的持续时间Duration为 t_end – t_start, 信号离散化造成的采样点数 N = Duration/t_s +

Matlab中fft与fftshift命令的小结与分析

转载自:http://wang-yg.diandian.com/post/2011-03-12/40028916801 我们知道Fourier分析是信号处理里很重要的技术,matlab提供了强大的信号处理能力,但是有一些细节部分需要我们注意. 记信号f(t)的起始时间为t_start, 终止时间为t_end, 采样周期为t_s, 可以计算信号的持续时间Duration为 t_end – t_start, 信号离散化造成的采样点数 N = Duration/t_s + 1; 根据Fourier分析

matlab中同一文件定义子函数的方法

在matlab中一个.m文件中可以有多个的子函数,但仅能有一个主函数,并且M文件名必须和主函数相同在一个m文件中通常有两种定义子函数的方法: 1.嵌套定义 myfunc1会和主函数共享变量名.这种情况下,使用相同的变量名,如果不是故意为之,就不合适了.function mainFunc(... a = myfunc1();...function myfunc1()...end end2. 非嵌套定义function mainFunc()...a = myfunc1();...end functi

Matlab中函数定义方法

Matlab自定义函数的六种方法 n1.函数文件+调用函数(命令)文件:需单独定义一个自定义函数的M文件: n2.函数文件+子函数:定义一个具有多个自定义函数的M文件: n3.Inline:无需M文件,直接定义: n4.匿名函数: n5.Syms+subs:无需M文件,直接定义: n6.字符串+subs:无需M文件,直接定义. ------------ 1.函数文件+调用函数文件:定义多个M文件 % 调用函数文件:myfile.m clear clc for t=1:10 y=mylfg(t);

[转] Matlab中给信号加高斯白噪声的方法

MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN.WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声. 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度. y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗. y = wgn(m,n,p,imp,state) 重置RANDN的状态. 在数值变量后还可附加一些标志性参数: y = wgn(

MATLAB中图像处理的一些简单函数

A. imreadimread函数用于读入各种图像文件,其一般的用法为[X,MAP]=imread('filename','fmt')其中,X,MAP分别为读出的图像数据和颜色表数据,fmt为图像的格式,filename为读取的图像文件(可以加上文件的路径).例:[X,MAP]=imread('flowers.tif','tif');比较读取二值图像,灰度图像,索引图像,彩色图像的X和MAP的特点,可以利用size函数用来显示数组的维数,了解数据的特点.B=size(a) 返回数组a 的维数.