机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

  k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k。k均值是基于相似度的聚类,为没有标签的一簇实例分为一类。

  一 经典的k-均值聚类  

  思路:  

  1 随机创建k个质心(k必须指定,二维的很容易确定,可视化数据分布,直观确定即可);

  2 遍历数据集的每个实例,计算其到每个质心的相似度,这里也就是欧氏距离;把每个实例都分配到距离最近的质心的那一类,用一个二维数组数据结构保存,第一列是最近质心序号,第二列是距离;

  3 根据二维数组保存的数据,重新计算每个聚簇新的质心;

  4 迭代2 和 3,直到收敛,即质心不再变化;

from numpy import *

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    dataMat = []                #assume last column is target value
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split(‘\t‘)
        fltLine = map(float,curLine) #map all elements to float()
        dataMat.append(fltLine)
    return dataMat

def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))#create centroid mat
    for j in range(n):#create random cluster centers, within bounds of each dimension
        minJ = min(dataSet[:,j])
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
    return centroids

def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))#create mat to assign data points
                                      #to a centroid, also holds SE of each point
    centroids = createCent(dataSet, k)
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):#for each data point assign it to the closest centroid
            minDist = inf; minIndex = -1
            for j in range(k):
                distJI = distMeas(centroids[j,:],dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2
        print centroids
        for cent in range(k):#recalculate centroids
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
            centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
    return centroids, clusterAssment

  经典的k均值聚类有很大的缺点就是很容易收敛到局部最优,为了避免这种局部最优,我们引入了二分k-均值算法。

  二 二分k-均值聚类算法

  二分k-均值聚类算法是基于经典k-均值算法实现的;里面调用经典k-均值(k=2),把一个聚簇分成两个,迭代到分成k个停止;

  具体思路:

  1 把整个数据集看成一个聚簇,计算质心;并用同样的数据结构二维数组保存每个实例到质心的距离;

  2 对每一个聚簇进行2-均值聚类划分;

  3 计算划分后的误差,选择所有被划分的聚簇中总误差最小的划分保存;

  4 迭代2 和 3 直到聚簇数目达到k停止;

def biKmeans(dataSet, k, distMeas=distEclud):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))
    centroid0 = mean(dataSet, axis=0).tolist()[0]
    centList =[centroid0] #create a list with one centroid
    for j in range(m):#calc initial Error
        clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
    while (len(centList) < k):
        lowestSSE = inf
        for i in range(len(centList)):
            ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
            centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
            sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
            sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
            print "sseSplit, and notSplit: ",sseSplit,‘--‘,sseNotSplit
            if (sseSplit + sseNotSplit) < lowestSSE:
                bestCentToSplit = i
                bestNewCents = centroidMat
                bestClustAss = splitClustAss.copy()
                lowestSSE = sseSplit + sseNotSplit
        bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
        bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
        print ‘the bestCentToSplit is: ‘,bestCentToSplit
        print ‘the len of bestClustAss is: ‘, len(bestClustAss)
        centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids
        centList.append(bestNewCents[1,:].tolist()[0])
        clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
    return mat(centList), clusterAssment

  三 地理位置聚簇实例

  地理位置的经纬度正好是二维的,可以可视化出来,所以很适合聚类算法确定质心个数k值;值得注意的是,球面计算距离,不能简单的用欧式距离,而需要用球面距离公式,见函数distSLC;

  代码的含义给定n个俱乐部地址名称,然后使用urllib包,调用yahoo地图的API返回经纬度,调用我们上面实现的k均值聚类算法,找到聚簇的中心,最后利用matplotlib工具可视化出来;

import urllib
import json
def geoGrab(stAddress, city):
    apiStem = ‘http://where.yahooapis.com/geocode?‘  #create a dict and constants for the goecoder
    params = {}
    params[‘flags‘] = ‘J‘#JSON return type
    params[‘appid‘] = ‘aaa0VN6k‘
    params[‘location‘] = ‘%s %s‘ % (stAddress, city)
    url_params = urllib.urlencode(params)
    yahooApi = apiStem + url_params      #print url_params
    print yahooApi
    c=urllib.urlopen(yahooApi)
    return json.loads(c.read())

from time import sleep
def massPlaceFind(fileName):
    fw = open(‘places.txt‘, ‘w‘)
    for line in open(fileName).readlines():
        line = line.strip()
        lineArr = line.split(‘\t‘)
        retDict = geoGrab(lineArr[1], lineArr[2])
        if retDict[‘ResultSet‘][‘Error‘] == 0:
            lat = float(retDict[‘ResultSet‘][‘Results‘][0][‘latitude‘])
            lng = float(retDict[‘ResultSet‘][‘Results‘][0][‘longitude‘])
            print "%s\t%f\t%f" % (lineArr[0], lat, lng)
            fw.write(‘%s\t%f\t%f\n‘ % (line, lat, lng))
        else: print "error fetching"
        sleep(1)
    fw.close()

def distSLC(vecA, vecB):#Spherical Law of Cosines
    a = sin(vecA[0,1]*pi/180) * sin(vecB[0,1]*pi/180)
    b = cos(vecA[0,1]*pi/180) * cos(vecB[0,1]*pi/180) *                       cos(pi * (vecB[0,0]-vecA[0,0]) /180)
    return arccos(a + b)*6371.0 #pi is imported with numpy

import matplotlib
import matplotlib.pyplot as plt
def clusterClubs(numClust=5):
    datList = []
    for line in open(‘places.txt‘).readlines():
        lineArr = line.split(‘\t‘)
        datList.append([float(lineArr[4]), float(lineArr[3])])
    datMat = mat(datList)
    myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC)
    fig = plt.figure()
    rect=[0.1,0.1,0.8,0.8]
    scatterMarkers=[‘s‘, ‘o‘, ‘^‘, ‘8‘, ‘p‘,                     ‘d‘, ‘v‘, ‘h‘, ‘>‘, ‘<‘]
    axprops = dict(xticks=[], yticks=[])
    ax0=fig.add_axes(rect, label=‘ax0‘, **axprops)
    imgP = plt.imread(‘Portland.png‘)
    ax0.imshow(imgP)
    ax1=fig.add_axes(rect, label=‘ax1‘, frameon=False)
    for i in range(numClust):
        ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:]
        markerStyle = scatterMarkers[i % len(scatterMarkers)]
        ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90)
    ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker=‘+‘, s=300)
    plt.show()

  四 总结

  优点:易实现;

  缺点:可能收敛到局部最小值,在大数据集上收敛较慢;

  适用数据类型:数值型;

时间: 2024-10-22 23:44:24

机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例的相关文章

机器学习实战ByMatlab(四)二分K-means算法

前面我们在是实现K-means算法的时候,提到了它本身存在的缺陷: 1.可能收敛到局部最小值 2.在大规模数据集上收敛较慢 对于上一篇博文最后说的,当陷入局部最小值的时候,处理方法就是多运行几次K-means算法,然后选择畸变函数J较小的作为最佳聚类结果.这样的说法显然不能让我们接受,我们追求的应该是一次就能给出接近最优的聚类结果. 其实K-means的缺点的根本原因就是:对K个质心的初始选取比较敏感.质心选取得不好很有可能就会陷入局部最小值. 基于以上情况,有人提出了二分K-means算法来解

k-均值聚类算法;二分k均值聚类算法

根据<机器学习实战>一书第十章学习k均值聚类算法和二分k均值聚类算法,自己把代码边敲边理解了一下,修正了一些原书中代码的细微差错.目前代码有时会出现如下4种报错信息,这有待继续探究和完善. 报错信息: Warning (from warnings module): File "F:\Python2.7.6\lib\site-packages\numpy\core\_methods.py", line 55 warnings.warn("Mean of empty

机器学习经典算法详解及Python实现--聚类及K均值、二分K-均值聚类算法

摘要 聚类是一种无监督的学习(无监督学习不依赖预先定义的类或带类标记的训练实例),它将相似的对象归到同一个簇中,它是观察式学习,而非示例式的学习,有点像全自动分类.说白了,聚类(clustering)是完全可以按字面意思来理解的--将相同.相似.相近.相关的对象实例聚成一类的过程.机器学习中常见的聚类算法包括 k-Means算法.期望最大化算法(Expectation Maximization,EM,参考"EM算法原理").谱聚类算法(参考机器学习算法复习-谱聚类)以及人工神经网络算法

机器学习实战笔记-利用K均值聚类算法对未标注数据分组

聚类是一种无监督的学习,它将相似的对象归到同一个簇中.它有点像全自动分类.聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好 簇识别给出聚类结果的含义.假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么.聚类与分类的最大不同在于,分类的目标事先巳知,而聚类则不一样.因为其产生的结果与分类相同,而只是类别没有预先定义,聚类有时也被称为无监督分类(unsupervised classification ). 聚类分析试图将相似对象归人同一簇,将不相似对象归到不

《机器学习实战》之二分K-均值聚类算法的python实现

<机器学习实战>之二分K-均值聚类算法的python实现 上面博文介绍了K-均值聚类算法及其用python实现,上篇博文中的两张截图,我们可以看到,由于K-均值聚类算法中由于初始质心的选取,会造成聚类的局部最优,并不是全局最优,因此,会造成聚类的效果并不理想,为克服K-均值算法收敛于局部最小值的问题,就有了二分K-均值算法. 二分K-均值聚类算法 二分K均值算法是基本K均值算法的直接扩充,其基本思想是:为了得到K个簇,首先将所有点的集合分裂成两个簇,然后从这些簇中选取一个继续分裂,迭代直到产生

机器学习--k均值聚类(k-means)算法

一.基本原理 分类是指分类器根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类.分类被称为监督学习.如果训练集的样本没有标注类别,那么就需要用到聚类.聚类是把相似的样本聚成一类,这种相似性通常以距离来度量.聚类被称为无监督学习. 聚类是指根据"物以类聚"的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程.它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似.与分类规则不同,进行聚类前并不知道

机器学习实战笔记-K近邻算法1(分类动作片与爱情片)

K近邻算法采用测量不同特征值之间的距离方法进行分类 K近邻算法特点: 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. K近邻算法原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的 特征进行比较,然后算法提取样本集中特征最相似数据(最近 邻)的分类标签.一般来说,我们只选择样本数据集中前k个最

k近邻算法python实现 -- 《机器学习实战》

1 ''' 2 Created on Nov 06, 2017 3 kNN: k Nearest Neighbors 4 5 Input: inX: vector to compare to existing dataset (1xN) 6 dataSet: size m data set of known vectors (NxM) 7 labels: data set labels (1xM vector) 8 k: number of neighbors to use for compar

【机器学习笔记五】聚类 - k均值聚类

参考资料: [1]Spark Mlib 机器学习实践 [2]机器学习 [3]深入浅出K-means算法  http://www.csdn.net/article/2012-07-03/2807073-k-means 一.概念 K-means聚类是在无监督的情况下,将样本数据进行聚类.以2均值聚类的算法为例: 1.在样本中选择两个初始化中心点: 2.计算所有样本到这两个中心点的距离,并以此为基准将样本分为两类: 3.将中心点移到这类样本的新中心点: 4.重复2.3步骤直到满足要求: K-means