SPOJ DISUBSTR ——后缀数组

【题目分析】

后缀数组模板题。

由于height数组存在RMQ的性质。

那么对于一个后缀,与前面相同的串总共有h[i]+sa[i]个。然后求和即可。

【代码】(模板来自Claris,这个板子太漂亮了)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>

#include <map>
#include <set>
#include <queue>
#include <string>
#include <iostream>
#include <algorithm>

using namespace std;

#define maxn 500005
#define N 500005
#define inf 0x3f3f3f3f
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)

void Finout()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
//    freopen("out.txt","w",stdout);
    #endif
}

int Getint()
{
    int x=0,f=1; char ch=getchar();
    while (ch<‘0‘||ch>‘9‘) {if (ch==‘-‘) f=-1; ch=getchar();}
    while (ch>=‘0‘&&ch<=‘9‘) {x=x*10+ch-‘0‘; ch=getchar();}
    return x*f;
}

struct Suffix_Array{
	char s[maxn];
	int rk[maxn],sa[maxn],h[maxn],tmp[maxn],cnt[maxn];
	void build(int n,int m)
	{
		int i,j,k;n++;
		F(i,0,2*5+4) rk[i]=sa[i]=h[i]=tmp[i]=0;
		F(i,0,m-1) cnt[i]=0;
		F(i,0,n-1) cnt[rk[i]=s[i]]++;
		F(i,1,m-1) cnt[i]+=cnt[i-1];
		F(i,0,n-1) sa[--cnt[rk[i]]]=i;
		for (k=1;k<=n;k<<=1)
		{
			F(i,0,n-1)
			{
				j=sa[i]-k;
				if (j<0) j+=n;
				tmp[cnt[rk[j]]++]=j;
			}
			sa[tmp[cnt[0]=0]]=j=0;
			F(i,1,n-1)
			{
				if (rk[tmp[i]]!=rk[tmp[i-1]]||rk[tmp[i]+k]!=rk[tmp[i-1]+k]) cnt[++j]=i;
				sa[tmp[i]]=j;
			}
			memcpy(rk,sa,n*sizeof(int));
			memcpy(sa,tmp,n*sizeof(int));
			if (j>=n-1) break;
		}
		for (j=rk[h[i=k=0]=0];i<n-1;++i,++k)
			while (~k&&s[i]!=s[sa[j-1]+k]) h[j]=k--,j=rk[sa[j]+1];
	}
}arr;

int main()
{
	int tt;
	scanf("%d",&tt);
	while (tt--)
	{
	    scanf("%s",arr.s);
	    int ans=0,l=strlen(arr.s);
	    arr.s[l]=0;
	    arr.build(l,128);
	    ans+=l-arr.sa[1];
	    F(i,2,l) ans+=l-arr.sa[i]-arr.h[i];
	    cout<<ans<<endl;
	}
}

  

时间: 2024-12-19 08:11:07

SPOJ DISUBSTR ——后缀数组的相关文章

SPOJ DISUBSTR 后缀数组

题目链接:http://www.spoj.com/problems/DISUBSTR/en/ 题意:给定一个字符串,求不相同的子串个数. 思路:直接根据09年oi论文<<后缀数组——出来字符串的有力工具>>的解法. 还有另一种思想:总数为n*(n-1)/2,height[i]是两个后缀的最长公共前缀,所以用总数-height[i]的和就是答案 #define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<

[spoj DISUBSTR]后缀数组统计不同子串个数

题目链接:https://vjudge.net/contest/70655#problem/C 后缀数组的又一神奇应用.不同子串的个数,实际上就是所有后缀的不同前缀的个数. 考虑所有的后缀按照rank排好了,我们现在已知height,也就是相邻的两个的最长公共前缀是多少.那么不同的子串个数怎么统计呢? 从第一个串开始考虑,ans+=L1.再看第二个串,会加进来几个不同的前缀呢?就是ans+=L2-height[2].第三个类似,会加进来ans+=L3-height[3]-- 因此最后的结果就是a

Distinct Substrings SPOJ - DISUBSTR(后缀数组水题)

求不重复的子串个数 用所有的减去height就好了 推出来的... #include <iostream> #include <cstdio> #include <sstream> #include <cstring> #include <map> #include <cctype> #include <set> #include <vector> #include <stack> #include

SPOJ 220后缀数组:求每个字符串至少出现两次且不重叠的最长子串

思路:也是n个串连接成一个串,中间用没出现过的字符隔开,然后求后缀数组. 因为是不重叠的,所以和POJ 1743判断一样,只不过这里是多个串,每个串都要判断里面的最长公共前缀有没有重叠,所以用数组存下来就得了,然后再判断. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<map> #include<queue> #in

SPOJ SUBST1 后缀数组

题目链接:http://www.spoj.com/problems/SUBST1/en/ 题意:给定一个字符串,求不相同的子串个数. 思路:直接根据09年oi论文<<后缀数组——出来字符串的有力工具>>的解法. 此题和SPOJ DISUBSTR一样,至少数据范围变大了. #define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<cstdio> #include<cstring> #i

SPOJ PHRASES 后缀数组

题目链接:http://www.spoj.com/problems/PHRASES/en/ 题意:给定n个字符串,求一个最长的子串至少在每个串中的不重叠出现次数都不小于2.输出满足条件的最长子串长度 思路:根据<<后缀数组——处理字符串的有力工具>>的思路,先将 n个字符串连起来, 中间用不相同的且没有出现在字符串中的字符隔开, 求后缀数组. 然后二分答案, 再将后缀分组.判断的时候, 要看是否有一组后缀在每个原来的字符串中至少出现两次, 并且在每个原来的字符串中, 后缀的起始位置

SPOJ REPEATS 后缀数组

题目链接:http://www.spoj.com/problems/REPEATS/en/ 题意:首先定义了一个字符串的重复度.即一个字符串由一个子串重复k次构成.那么最大的k即是该字符串的重复度.现在给定一个长度为n的字符串,求最大重复次数. 思路:根据<<后缀数组——处理字符串的有力工具>>的思路,先穷举长度L,然后求长度为L 的子串最多能连续出现几次.首先连续出现1 次是肯定可以的,所以这里只考虑至少2 次的情况.假设在原字符串中连续出现2 次,记这个子字符串为S,那么S 肯

Spoj-DISUBSTR - Distinct Substrings~New Distinct Substrings SPOJ - SUBST1~(后缀数组求解子串个数)

Spoj-DISUBSTR - Distinct Substrings New Distinct Substrings SPOJ - SUBST1 我是根据kuangbin的后缀数组专题来的 这两题题意一样求解字符串中不同字串的个数: 这个属于后缀数组最基本的应用 给定一个字符串,求不相同的子串的个数. 算法分析: 每个子串一定是某个后缀的前缀,那么原问题等价于求所有后缀之间的不相同的前缀的个数. 如果所有的后缀按照 suffix(sa[1]), suffix(sa[2]), suffix(sa

SPOJ Distinct Substrings(后缀数组求不同子串个数,好题)

DISUBSTR - Distinct Substrings no tags Given a string, we need to find the total number of its distinct substrings. Input T- number of test cases. T<=20; Each test case consists of one string, whose length is <= 1000 Output For each test case output