GraphX中Pregel单源点最短路径(转)

原文链接:GraphX中Pregel单源点最短路径

GraphX中的单源点最短路径例子,使用的是类Pregel的方式。

核心部分是三个函数:

1.节点处理消息的函数  vprog: (VertexId, VD, A) => VD (节点id,节点属性,消息) => 节点属性

2.节点发送消息的函数 sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId,A)]   (边元组) => Iterator[(目标节点id,消息)]

3.消息合并函数 mergeMsg: (A, A) => A)    (消息,消息) => 消息

package myclass.GraphX  

import org.apache.spark.graphx._
import org.apache.spark.SparkContext  

// Import random graph generation library  

import org.apache.spark.graphx.util.GraphGenerators  

/**
 * Created by jack on 3/4/14.
 */
object Pregel {
    def main(args: Array[String]) {
        val sc = new SparkContext("local", "pregel test", System.getenv("SPARK_HOME"), SparkContext.jarOfClass(this.getClass))
        // A graph with edge attributes containing distances
        //初始化一个随机图,节点的度符合对数正态分布,边属性初始化为1
        val graph: Graph[Int, Double] =
            GraphGenerators.logNormalGraph(sc, numVertices = 10).mapEdges(e => e.attr.toDouble)
graph.edges.foreach(println)
        val sourceId: VertexId = 4 // The ultimate source  

        // Initialize the graph such that all vertices except the root have distance infinity.
        //初始化各节点到原点的距离
        val initialGraph = graph.mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity)  

        val sssp = initialGraph.pregel(Double.PositiveInfinity)(
            // Vertex Program,节点处理消息的函数,dist为原节点属性(Double),newDist为消息类型(Double)
            (id, dist, newDist) => math.min(dist, newDist),  

            // Send Message,发送消息函数,返回结果为(目标节点id,消息(即最短距离))
            triplet => {
                if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
                    Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
                } else {
                    Iterator.empty
                }
            },
            //Merge Message,对消息进行合并的操作,类似于Hadoop中的combiner
            (a, b) => math.min(a, b)
        )  

        println(sssp.vertices.collect.mkString("\n"))
    }
}  

其他参考链接:

http://bbs.csdn.net/topics/390985424

时间: 2024-10-11 00:54:45

GraphX中Pregel单源点最短路径(转)的相关文章

单源点最短路径的Dijkstra算法

在带权图(网)里,点A到点B所有路径中边的权值之和为最短的那一条路径,称为A,B两点之间的最短路径;并称路径上的第一个顶点为源点(Source),最后一个顶点为终点(Destination).在无权图中,最短路径则是两点之间经历的边数最少的路径.实际上,只要把无权图上的每条边都看成是权值为1的边,那么无权图和带权图的最短路径是一致的. 给定一个带权有向图G=(V,E),指定图G中的某一个顶点的V为源点,求出从V到其他各顶点之间的最短路径,这个问题称为单源点最短路径问题. 迪杰斯特拉(Dijkst

Bellman-Ford算法——求解单源点最短路径问题

Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些.但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的<算法导论>也只介绍了基本的Bellm

算法基础 - 单源点最短路径SPFA

SPFA是非常简单的最短路径算法,思想就是从起点开始,进行宽度优先搜索,不断松弛S点到其他相邻点的距离.如果松弛了点B,则把点B放到队列里.假如点B已经在队列里了,就不要放了,判断在不在队列可以用个数组来表示. 引用一段hihocoder上的解释: 构造一个队列,最开始队列里只有(S, 0)--表示当前处于点S,从点S到达该点的距离为0,然后每次从队首取出一个节点(i, L)--表示当前处于点i,从点S到达该点的距离为L,接下来遍历所有从这个节点出发的边(i, j, l)--表示i和j之间有一条

带负权图的单源最短路径算法:Bellman-Ford算法

算法简介 前面介绍过图的单源最短路径算法Dijkstra算法,然而Dijkstra算法无法判断含负权边的图的最短路.如果遇到负权,在没有负权回路存在时(负权回路的含义是,回路的权值和为负.)即便有负权的边,也可以采用Bellman-Ford算法正确求出最短路径. Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数 w是 边集 E 的映射.对图G运行Bellman-Ford算法的结果是一个布尔值,表

Dijkstra算法求单源最短路径

1.最短路径 在一个连通图中,从一个顶点到另一个顶点间可能存在多条路径,而每条路径的边数并不一定相同.如果是一个带权图,那么路径长度为路径上各边的权值的总和.两个顶点间路径长度最短的那条路径称为两个顶点间的最短路径,其路径长度称为最短路径长度. 最短路径在实际中有重要的应用价值.如用顶点表示城市,边表示两城市之间的道路,边上的权值表示两城市之间的距离.那么城市A到城市B连通的情况下,哪条路径距离最短呢,这样的问题可以归结为最短路径问题. 求最短路径常见的算法有Dijkstra算法和Floyd算法

单源最短路径 dijkstra算法实现

本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图,并且连通,有向图,不连通图的做法类似. 算法简述: 首先确定"单源"的源,假设是第0个顶点. 维护三个数组dist[], color[], path[],设其下标分别为0-i-n-1: dist[] 表示源点到顶点i的最短距离,在初始化时,如果源点到顶点i有路径,则初始化为路径的权重,否则初始化为INT_MAX: color[] 数组其实表示两个集合,即color[i]值为1的集合表示已经确定最短路径的点的集合,

数据结构之单源最短路径(迪杰斯特拉算法)-(九)

最开始接触最短路径是在数据结构中图的那个章节中.运用到实际中就是我在大三参加的一次美赛中,解决中国的水资源问题.所谓单源最短路径,就是一个起点到图中其他节点的最短路径,这是一个贪心算法. 迪杰斯特拉算法原理(百科): 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度 (2)每个顶

数据结构:单源最短路径--Dijkstra算法

Dijkstra算法 单源最短路径 给定一带权图,图中每条边的权值是非负的,代表着两顶点之间的距离.指定图中的一顶点为源点,找出源点到其它顶点的最短路径和其长度的问题,即是单源最短路径问题. Dijkstra算法 求解单源最短路径问题的常用方法是Dijkstra(迪杰斯特拉)算法.该算法使用的是贪心策略:每次都找出剩余顶点中与源点距离最近的一个顶点. 算法思想 带权图G=<V,E>,令S为已确定了最短路径顶点的集合,则可用V-S表示剩余未确定最短路径顶点的集合.假设V0是源点,则初始 S={V

dijkstra 两点的最短路径 单源 最短路径

思路以dist数组 来扩充  路径的访问,不断的刷新dist数组 设置一个顶点的集合s,并不断地扩充这个集合,一个顶点属于集合s当且仅当从源点到该点的路径已求出.开始时s中仅有源点,并且调整非s中点的最短路径长度,找当前最短路径点,将其加入到集合s,直到终点在s中.基本步骤:1.把所有结点分成两组:      第一组:包括已经确定最短路径的结点:      第二组:包括尚未确定最短路径的结点.2.开始时,第一组只包含起点,第二组包含剩余的点:3.用贪心的策略,按最短路径长度递增的顺序把第二组的结