The difference between variance and bias

Variance is closely related to overfitting. High variance is usually caused by training a powerful model but with limited data, in other words, training with different sets of data would result in a different model.

Bias is closely related to underfitting. High bias is often caused by using a less powerful model.

时间: 2024-10-14 18:17:22

The difference between variance and bias的相关文章

Basics of Ensemble Learning Explained in Simple English

Basics of Ensemble Learning Explained in Simple English Introduction Ensemble modeling is a powerful way to improve performance of your model. It usually pays off to apply ensemble learning over and above various models you might be building. Time an

Understanding the Bias-Variance Tradeoff

Understanding the Bias-Variance Tradeoff When we discuss prediction models, prediction errors can be decomposed into two main subcomponents we care about: error due to "bias" and error due to "variance". There is a tradeoff between a m

(zhuan) Using the latest advancements in AI to predict stock market movements

Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog is copied from: https://github.com/borisbanushev/stockpredictionai In this notebook I will create a complete process for predicting stock price moveme

【coursera笔记】Machine Learning(Week6)

发现自己不写总结真是件很恶劣的事情,好多学的东西没有自己总结都忘记了.所以决定从今天开始,学东西的时候一定跟上总结. 我写的东西大多数是自己通俗的总结,不太喜欢写严格的定义或者证明,写了也记不住,欢迎指正. 1. High Bias vs. High Variance High Bias:通常是因为模型过于简单,使得不能成功拟合数据.比如说一些有二次曲线特性的数据,如果用一次直线去拟合就会出现这个问题,所以它对应了Underfitting问题.另外,从泛化角度来说,这样的模型泛化程度更高. Hi

SVM: 使用kernels(核函数)的整个SVM算法过程

将所有的样本都选做landmarks 一种方法是将所有的training data都做为landmarks,这样就会有m个landmarks(m个trainnign data),这样features就是某个x(可以是trainning data/cross validation data/test data里面的)与这些landmarks之间的距离的远近程度的描述. landmarks选定后得出新的features向量 给出一个x,则通过这些landmarks来计算features向量,和之前的

Probability And Statistics——Correlations&Covariance

Skew(偏度) 在概率论和统计学中,偏度衡量实数随机变量概率分布的不对称性.偏度的值可以为正,可以为负或者甚至是无法定义.在数量上,偏度为负(负偏态)就意味着在概率密度函数左侧的尾部比右侧的长,绝大多数的值(包括中位数在内)位于平均值的右侧.偏度为正(正偏态)就意味着在概率密度函数右侧的尾部比左侧的长,绝大多数的值(但不一定包括中位数)位于平均值的左侧.偏度为零就表示数值相对均匀地分布在平均值的两侧,但不一定意味着其为对称分布. import matplotlib.pyplot as plt

Stanford机器学习---第六讲. 怎样选择机器学习方法、系统

原文见http://blog.csdn.net/abcjennifer/article/details/7797502  添加了一些自己的注释和笔记 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Stand

In machine learning, is more data always better than better algorithms?

In machine learning, is more data always better than better algorithms? No. There are times when more data helps, there are times when it doesn't. Probably one of the most famous quotes defending the power of data is that of Google's Research Directo

数理统计习题一

{\bf Question 1:}Let $X\sim f_\theta(x)$ for some density function $f_\theta(x)$ and define\[I(\theta) = E_\theta\left[ \left( \frac{\partial}{\partial\theta} \log f_\theta(X) \right)^2 \right].\]Prove that if $\partial^2/\partial\theta^2 \log f_\the