Wormholes
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 36717 | Accepted: 13438 |
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ‘s farms
comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N,
M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to
F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N,
M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S,
E, T) that describe, respectively: a bidirectional path between
S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S,
E, T) that describe, respectively: A one way path from S to
E that also moves the traveler back T seconds.
Output
Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
Source
70ms
#include<iostream> //79ms #include<cstdio> #include<cstring> #include<cmath> #define INF 10000000 using namespace std; struct node { int u,v,w; } edge[5500]; int low[5500]; int n,m,z; int num=0; int Bellman() { for(int i=0; i<=n; i++) low[i]=INF; for(int i=0; i<n-1; i++) { int flag=0; for(int j=0; j<num; j++) { if(low[edge[j].u]+edge[j].w<low[edge[j].v]) { low[edge[j].v]=low[edge[j].u]+edge[j].w; flag=1; } } if(flag==0) //存在负权回路 break; } for(int j=0; j<num; j++) //判断负权回路 { if(low[edge[j].u]+edge[j].w<low[edge[j].v]) return 1; } return 0; } int main() { int T; scanf("%d",&T); while(T--) { scanf("%d%d%d",&n,&m,&z); int a,b,c; num=0; for(int i=1; i<=m; i++) { scanf("%d%d%d",&a,&b,&c); edge[num].u=a; edge[num].v=b; edge[num++].w=c; edge[num].u=b; edge[num].v=a; edge[num++].w=c; } for(int i=1; i<=z; i++) { scanf("%d%d%d",&a,&b,&c); edge[num].u=a; edge[num].v=b; edge[num++].w=-c; } if(Bellman()) printf("YES\n"); else printf("NO\n"); } }
700ms
#include<iostream> //挨个点遍历 #include<cstdio> #include<cstring> #include<cmath> #define INF 0x3f3f3f3f using namespace std; struct node { int u,v,w; } edge[5500]; int low[550]; int n,m,z; int num=0; int Bellman(int u0) { for(int i=0; i<=n; i++) low[i]=INF; low[u0]=0; for(int i=0; i<n; i++) //递推n次,让其构成环来判断 { int flag=0; for(int j=0; j<num; j++) { if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v]) { low[edge[j].v]=low[edge[j].u]+edge[j].w; flag=1; } } if(flag==0) //存在负权回路(减少时间) break; } if(low[u0]<0) return 1; return 0; } int main() { int T; scanf("%d",&T); while(T--) { scanf("%d%d%d",&n,&m,&z); int a,b,c; num=0; for(int i=1; i<=m; i++) { scanf("%d%d%d",&a,&b,&c); edge[num].u=a; edge[num].v=b; edge[num++].w=c; edge[num].u=b; edge[num].v=a; edge[num++].w=c; } for(int i=1; i<=z; i++) { scanf("%d%d%d",&a,&b,&c); edge[num].u=a; edge[num].v=b; edge[num++].w=-c; } int biao=1; for(int i=1; i<=n; i++) { if(Bellman(i)) { printf("YES\n"); biao=0; break; } } if(biao) printf("NO\n"); } } /* 780ms #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define INF 0x3f3f3f3f using namespace std; struct node { int u,v,w; } edge[5500]; int low[5500]; int n,m,z; int num=0; int Bellman(int u0) { for(int i=0; i<=n; i++) low[i]=INF; low[u0]=0; //初始化 for(int i=0; i<n-1; i++) //n-1次 { int flag=0; for(int j=0; j<num; j++) { if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v]) //不同点 { //存在low[edge[j].u]!=INF,就必须有low[u0]=0;初始化 low[edge[j].v]=low[edge[j].u]+edge[j].w; flag=1; } } if(flag==0) //存在负权回路 break; } for(int j=0; j<num; j++) { if(low[edge[j].u]!=INF&&low[edge[j].u]+edge[j].w<low[edge[j].v]) return 1; } return 0; } int main() { int T; scanf("%d",&T); while(T--) { scanf("%d%d%d",&n,&m,&z); int a,b,c; num=0; for(int i=1; i<=m; i++) { scanf("%d%d%d",&a,&b,&c); edge[num].u=a; edge[num].v=b; edge[num++].w=c; edge[num].u=b; edge[num].v=a; edge[num++].w=c; } for(int i=1; i<=z; i++) { scanf("%d%d%d",&a,&b,&c); edge[num].u=a; edge[num].v=b; edge[num++].w=-c; } int biao=1; for(int i=1; i<=n; i++) { if(Bellman(i)) { printf("YES\n"); biao=0; break; } } if(biao) printf("NO\n"); } } */
版权声明:本文为博主原创文章,未经博主允许不得转载。