java泛型小总结

一. 泛型概念的提出(为什么需要泛型)?

首先,我们看下下面这段简短的代码:

public class GenericTest {

      public static void main(String[] args) {
          List list = new ArrayList();
          list.add("qqyumidi");
          list.add("corn");
          list.add(100);

          for (int i = 0; i < list.size(); i++) {
             String name = (String) list.get(i); // 1
             System.out.println("name:" + name);
         }
     }
 }

定义了一个List类型的集合,先向其中加入了两个字符串类型的值,随后加入一个Integer类型的值。这是完全允许的,因为此时list默认的类型为Object类型。在之后的循环中,由于忘记了之前在list中也加入了Integer类型的值或其他编码原因,很容易出现类似于//1中的错误。因为编译阶段正常,而运行时会出现“java.lang.ClassCastException”异常。因此,导致此类错误编码过程中不易发现。

在如上的编码过程中,我们发现主要存在两个问题:

1.当我们将一个对象放入集合中,集合不会记住此对象的类型,当再次从集合中取出此对象时,改对象的编译类型变成了Object类型,但其运行时类型任然为其本身类型。

2.因此,//1处取出集合元素时需要人为的强制类型转化到具体的目标类型,且很容易出现“java.lang.ClassCastException”异常。

那么有没有什么办法可以使集合能够记住集合内元素各类型,且能够达到只要编译时不出现问题,运行时就不会出现“java.lang.ClassCastException”异常呢?答案就是使用泛型。

二.什么是泛型?

泛型,即“参数化类型”。一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参。那么参数化类型怎么理解呢?顾名思义,就是将类型由原来的具体的类型参数化,类似于方法中的变量参数,此时类型也定义成参数形式(可以称之为类型形参),然后在使用/调用时传入具体的类型(类型实参)。

看着好像有点复杂,首先我们看下上面那个例子采用泛型的写法。

 1  public class GenericTest {
 2
 3      public static void main(String[] args) {
 4          /*
 5          List list = new ArrayList();
 6          list.add("qqyumidi");
 7          list.add("corn");
 8          list.add(100);
 9          */
10
11          List<String> list = new ArrayList<String>();
12          list.add("qqyumidi");
13          list.add("corn");
14          //list.add(100);   // 1  提示编译错误
15
16          for (int i = 0; i < list.size(); i++) {
17              String name = list.get(i); // 2
18              System.out.println("name:" + name);
19          }
20      }
21  }

采用泛型写法后,在//1处想加入一个Integer类型的对象时会出现编译错误,通过List<String>,直接限定了list集合中只能含有String类型的元素,从而在//2处无须进行强制类型转换,因为此时,集合能够记住元素的类型信息,编译器已经能够确认它是String类型了。

结合上面的泛型定义,我们知道在List<String>中,String是类型实参,也就是说,相应的List接口中肯定含有类型形参。且get()方法的返回结果也直接是此形参类型(也就是对应的传入的类型实参)。下面就来看看List接口的的具体定义:

 1 public interface List<E> extends Collection<E> {
 2
 3     int size();
 4
 5     boolean isEmpty();
 6
 7     boolean contains(Object o);
 8
 9     Iterator<E> iterator();
10
11     Object[] toArray();
12
13     <T> T[] toArray(T[] a);
14
15     boolean add(E e);
16
17     boolean remove(Object o);
18
19     boolean containsAll(Collection<?> c);
20
21     boolean addAll(Collection<? extends E> c);
22
23     boolean addAll(int index, Collection<? extends E> c);
24
25     boolean removeAll(Collection<?> c);
26
27     boolean retainAll(Collection<?> c);
28
29     void clear();
30
31     boolean equals(Object o);
32
33     int hashCode();
34
35     E get(int index);
36
37     E set(int index, E element);
38
39     void add(int index, E element);
40
41     E remove(int index);
42
43     int indexOf(Object o);
44
45     int lastIndexOf(Object o);
46
47     ListIterator<E> listIterator();
48
49     ListIterator<E> listIterator(int index);
50
51     List<E> subList(int fromIndex, int toIndex);
52 }

我们可以看到,在List接口中采用泛型化定义之后,<E>中的E表示类型形参,可以接收具体的类型实参,并且此接口定义中,凡是出现E的地方均表示相同的接受自外部的类型实参。

自然的,ArrayList作为List接口的实现类,其定义形式是:

 public class ArrayList<E> extends AbstractList<E>
         implements List<E>, RandomAccess, Cloneable, java.io.Serializable {

     public boolean add(E e) {
         ensureCapacityInternal(size + 1);  // Increments modCount!!
         elementData[size++] = e;
         return true;
     }

     public E get(int index) {
         rangeCheck(index);
         checkForComodification();
         return ArrayList.this.elementData(offset + index);
     }

     //...省略掉其他具体的定义过程

 }

由此,我们从源代码角度明白了为什么//1处加入Integer类型对象编译错误,且//2处get()到的类型直接就是String类型了。

三.自定义泛型接口、泛型类和泛型方法

从上面的内容中,大家已经明白了泛型的具体运作过程。也知道了接口、类和方法也都可以使用泛型去定义,以及相应的使用。是的,在具体使用时,可以分为泛型接口、泛型类和泛型方法。

自定义泛型接口、泛型类和泛型方法与上述Java源码中的List、ArrayList类似。如下,我们看一个最简单的泛型类和方法定义:

 1 public class GenericTest {
 2
 3     public static void main(String[] args) {
 4
 5         Box<String> name = new Box<String>("corn");
 6         System.out.println("name:" + name.getData());
 7     }
 8
 9 }
10
11 class Box<T> {
12
13     private T data;
14
15     public Box() {
16
17     }
18
19     public Box(T data) {
20         this.data = data;
21     }
22
23     public T getData() {
24         return data;
25     }
26
27 }

在泛型接口、泛型类和泛型方法的定义过程中,我们常见的如T、E、K、V等形式的参数常用于表示泛型形参,由于接收来自外部使用时候传入的类型实参。那么对于不同传入的类型实参,生成的相应对象实例的类型是不是一样的呢?

 1 public class GenericTest {
 2
 3     public static void main(String[] args) {
 4
 5         Box<String> name = new Box<String>("corn");
 6         Box<Integer> age = new Box<Integer>(712);
 7
 8         System.out.println("name class:" + name.getClass());      // com.qqyumidi.Box
 9         System.out.println("age class:" + age.getClass());        // com.qqyumidi.Box
10         System.out.println(name.getClass() == age.getClass());    // true
11
12     }
13
14 }

由此,我们发现,在使用泛型类时,虽然传入了不同的泛型实参,但并没有真正意义上生成不同的类型,传入不同泛型实参的泛型类在内存上只有一个,即还是原来的最基本的类型(本实例中为Box),当然,在逻辑上我们可以理解成多个不同的泛型类型。

究其原因,在于Java中的泛型这一概念提出的目的,导致其只是作用于代码编译阶段,在编译过程中,对于正确检验泛型结果后,会将泛型的相关信息擦出,也就是说,成功编译过后的class文件中是不包含任何泛型信息的。泛型信息不会进入到运行时阶段。

对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。

四.类型通配符

接着上面的结论,我们知道,Box<Number>和Box<Integer>实际上都是Box类型,现在需要继续探讨一个问题,那么在逻辑上,类似于Box<Number>和Box<Integer>是否可以看成具有父子关系的泛型类型呢?

为了弄清这个问题,我们继续看下下面这个例子:

 1 public class GenericTest {
 2
 3     public static void main(String[] args) {
 4
 5         Box<Number> name = new Box<Number>(99);
 6         Box<Integer> age = new Box<Integer>(712);
 7
 8         getData(name);
 9
10         //The method getData(Box<Number>) in the type GenericTest is
11         //not applicable for the arguments (Box<Integer>)
12         getData(age);   // 1
13
14     }
15
16     public static void getData(Box<Number> data){
17         System.out.println("data :" + data.getData());
18     }
19
20 }

我们发现,在代码//1处出现了错误提示信息:The method getData(Box<Number>) in the t ype GenericTest is not applicable for the arguments (Box<Integer>)。显然,通过提示信息,我们知道Box<Number>在逻辑上不能视为Box<Integer>的父类。那么,原因何在呢?

 1 public class GenericTest {
 2
 3     public static void main(String[] args) {
 4
 5         Box<Integer> a = new Box<Integer>(712);
 6         Box<Number> b = a;  // 1
 7         Box<Float> f = new Box<Float>(3.14f);
 8         b.setData(f);        // 2
 9
10     }
11
12     public static void getData(Box<Number> data) {
13         System.out.println("data :" + data.getData());
14     }
15
16 }
17
18 class Box<T> {
19
20     private T data;
21
22     public Box() {
23
24     }
25
26     public Box(T data) {
27         setData(data);
28     }
29
30     public T getData() {
31         return data;
32     }
33
34     public void setData(T data) {
35         this.data = data;
36     }
37
38 }

这个例子中,显然//1和//2处肯定会出现错误提示的。在此我们可以使用反证法来进行说明。

假设Box<Number>在逻辑上可以视为Box<Integer>的父类,那么//1和//2处将不会有错误提示了,那么问题就出来了,通过getData()方法取出数据时到底是什么类型呢?Integer? Float? 还是Number?且由于在编程过程中的顺序不可控性,导致在必要的时候必须要进行类型判断,且进行强制类型转换。显然,这与泛型的理念矛盾,因此,在逻辑上Box<Number>不能视为Box<Integer>的父类。

好,那我们回过头来继续看“类型通配符”中的第一个例子,我们知道其具体的错误提示的深层次原因了。那么如何解决呢?总部能再定义一个新的函数吧。这和Java中的多态理念显然是违背的,因此,我们需要一个在逻辑上可以用来表示同时是Box<Integer>和Box<Number>的父类的一个引用类型,由此,类型通配符应运而生。

类型通配符一般是使用 ? 代替具体的类型实参。注意了,此处是类型实参,而不是类型形参!且Box<?>在逻辑上是Box<Integer>、Box<Number>...等所有Box<具体类型实参>的父类。由此,我们依然可以定义泛型方法,来完成此类需求。

public class GenericTest {

    public static void main(String[] args) {

        Box<String> name = new Box<String>("corn");
        Box<Integer> age = new Box<Integer>(712);
        Box<Number> number = new Box<Number>(314);

        getData(name);
        getData(age);
        getData(number);
    }

    public static void getData(Box<?> data) {
        System.out.println("data :" + data.getData());
    }

}

有时候,我们还可能听到类型通配符上限和类型通配符下限。具体有是怎么样的呢?

在上面的例子中,如果需要定义一个功能类似于getData()的方法,但对类型实参又有进一步的限制:只能是Number类及其子类。此时,需要用到类型通配符上限。

 1 public class GenericTest {
 2
 3     public static void main(String[] args) {
 4
 5         Box<String> name = new Box<String>("corn");
 6         Box<Integer> age = new Box<Integer>(712);
 7         Box<Number> number = new Box<Number>(314);
 8
 9         getData(name);
10         getData(age);
11         getData(number);
12
13         //getUpperNumberData(name); // 1
14         getUpperNumberData(age);    // 2
15         getUpperNumberData(number); // 3
16     }
17
18     public static void getData(Box<?> data) {
19         System.out.println("data :" + data.getData());
20     }
21
22     public static void getUpperNumberData(Box<? extends Number> data){
23         System.out.println("data :" + data.getData());
24     }
25
26 }

此时,显然,在代码//1处调用将出现错误提示,而//2 //3处调用正常。

类型通配符上限通过形如Box<? extends Number>形式定义,相对应的,类型通配符下限为Box<? super Number>形式,其含义与类型通配符上限正好相反,在此不作过多阐述了。

五.话外篇

本文中的例子主要是为了阐述泛型中的一些思想而简单举出的,并不一定有着实际的可用性。另外,一提到泛型,相信大家用到最多的就是在集合中,其实,在实际的编程过程中,自己可以使用泛型去简化开发,且能很好的保证代码质量。并且还要注意的一点是,Java中没有所谓的泛型数组一说。

对于泛型,最主要的还是需要理解其背后的思想和目的。

时间: 2024-08-01 23:52:23

java泛型小总结的相关文章

java泛型小问题

几年前当Java5还未正式发布的时候,看到过一些人写的介绍Tiger中的新特性,当时对我第一感觉冲击最大的就是泛型(generics)和注释(annotation),因为它们直接影响了我们编码的语法习惯. 在后来的使用过程中,对于泛型一直没有特别深入的使用过,没有遇到那样的需求和场景.只需要了解Java中的泛型是编译期的,运行期被“擦拭”掉了:然后还有几种通配符的表示就足够了. 直到一天我在查看Java5中Enum的源代码时,发现它是这么定义的: Java代码 public abstract c

java泛型小例子01

1 class info<T> { 2 private T name; 3 4 info(T name){ 5 this.name = name; 6 } 7 } 8 9 class hello{ 10 11 public static void function(info<?> temp){ 12 System.out.println("内容: "+temp); 13 } 14 15 public static void main(String[] args)

一个小栗子聊聊JAVA泛型基础

背景 周五本该是愉快的,可是今天花了一个早上查问题,为什么要花一个早上?我把原因总结为两点: 日志信息严重丢失,茫茫代码毫无头绪. 对泛型的认识不够,导致代码出现了BUG. 第一个原因可以通过以后编码谨慎的打日志来解决,我们今天主要来一起回顾下JAVA泛型基础. 一个小栗子 先看下面一个例子,test1实例化一个List容器的时候没有指定泛型参数,那么我们可以往这个容器里面放入任何类型的对象,这样是不是很爽?但是当我们从容器中取出容器中的对象的时候我们必须小心翼翼,因为容器中的对象具有运行时的类

1月21日 - (转)Java 泛型

java泛型 什么是泛型? 泛型(Generic type 或者 generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类.可以把类型参数看作是使用参数化类型时指定的类型的一个占位符,就像方法的形式参数是运行时传递的值的占位符一样. 可以在集合框架(Collection framework)中看到泛型的动机.例如,Map 类允许您向一个 Map 添加任意类的对象,即使最常见的情况是在给定映射(map)中保存某个特定类型(比如 String)的对象. 因为 M

java泛型的讲解

java泛型 什么是泛型? 泛型(Generic type 或者 generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类.可以把类型参数看作是使用参数化类型时指定的类型的一个占位符,就像方法的形式参数是运行时传递的值的占位符一样. 可以在集合框架(Collection framework)中看到泛型的动机.例如,Map 类允许您向一个 Map 添加任意类的对象,即使最常见的情况是在给定映射(map)中保存某个特定类型(比如 String)的对象. 因为 M

从零开始自学Java泛型的设计难不难?

引言 泛型是Java中一个非常重要的知识点,在Java集合类框架中泛型被广泛应用.本文我们将从零开始来看一下Java泛型的设计,将会涉及到通配符处理,以及让人苦恼的类型擦除. 泛型基础 泛型类 我们首先定义一个简单的Box类: public class Box { private String object; public void set(String object) { this.object = object; } public String get() { return object;

java泛型 之 入门(interface)

一:泛型简介: (1)所谓泛型,就是变量类型的参数化. 泛型是JDK1.5中一个最重要的特征.通过引入泛型,我们将获得编译时类型的安全和运行时更小的抛出ClassCastException的可能.在JDK1.5中,你可以声明一个集合将接收/返回的对象的类型.使用泛型时如果不指明参数类型,即泛型类没有参数化,会提示警告,此时类型为Object. (2)为什么使用泛型 使用泛型的典型例子,是在集合中的泛型使用.如果不使用泛型,存入集合中的元素可以是任何类型的,当从集合中取出时,所有的元素都是Obje

Java泛型解析(02):通配符限定

Java泛型解析(02):通配符限定 考虑一个这样的场景,计算数组中的最大元素. [code01] public class ArrayUtil { public static <T> T max(T[] array) { if (array == null || 0 == array.length) { return null ;} T max = array[0]; for (int i = 1; i < array.length; i++) { if (max.compareTo(

Java泛型指哪些

以下文章的内容主要是围绕(Java泛型:类型檫除.模板和泛型传递)这个内容来讲述的,一起看下小编带来的java的这三个泛型简介. Java泛型(generics)是JDK 5中引入的一个新特性,允许在定义类和接口的时候使用类型参数(type parameter).声明的类型参数在使用时用具体的类型来替换.泛型最主要的应用是在JDK 5中的新集合类框架中.对于泛型概念的引入,开发社区的观点是褒贬不一.从好的方面来说,泛型的引入可以解决之前的集合类框架在使用过程中通常会出现的运行时刻类型错误,因为编