一 数据结构的概念,时间复杂度和空间复杂度

一. 什么是数据结构:

对到底什么是数据结构这个概念,一直有很多不同的解释,也有许多不同的争论,这里只代表了我个人的认识.

数据结构:我们如何把现实中大量而复杂的问题以特定的数据类型和特定的存储结构保存到主存储器(内存)中,以及在此基础上为实现某

个功能(比如查找某个元素,删除某个元素等)而执行的相应操作,这个相应的操作也叫做算法.

1.算法的实现是依据不同的数据结构的。

2.算法:是对特定问题求解步骤的一种描述,以下特征:有穷性,确定性,可行性,输入和输出;

二. 时间复杂度和空间复杂度:

(1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时 间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的 语句执行次数称为语句频度或时间频度。记为T(n)。
(2)时间复杂度 在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间 复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大 时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另 外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为 O(n2)。 按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。 2、空间复杂度 与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作:
S(n)=O(f(n)) 我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模。讨论方法与时间复杂度类似,不再赘述。
(3)渐进时间复杂度评价算法时间性能   主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。

(4)空 间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储
空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。算法的输入输出数据所占用的存储空间是由要解决的问题决定
的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必
须编写出较短的算法。算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们
称这种算法是“就地\"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着 n的增大而增大,当n较大时,将占用较多的存储单元,例如将在第九章介绍的快速排序和归并排序算法就属于这种情况。

(5)
如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当 一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为0(10g2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为0(n).若形 参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,
用它来存储对应实参变量的地址,以便由系统自动引用实参变量。

(6) 下面如图是常见的算法的时间复杂度和空间复杂度:

时间: 2024-10-12 22:30:53

一 数据结构的概念,时间复杂度和空间复杂度的相关文章

数据结构和算法-时间复杂度和空间复杂度

[算法时间复杂度的定义] 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作:T(n) = O(f(n)).它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度.其中f(n)是问题规模n的某个函数. 即:执行次数=时间 [如何分析一个算法的时间复杂度?即:如何推到大O阶呢?] -用常数1取代运行时间中的所有加法常数 -在修改

数据结构和算法之时间复杂度和空间复杂度

前言 上一篇<数据结构和算法>中我介绍了数据结构的基本概念,也介绍了数据结构一般可以分为逻辑结构和物理结构.逻辑结构分为集合结构.线性结构.树形结构和图形结构.物理结构分为顺序存储结构和链式存储结构.并且也介绍了这些结构的特点.然后,又介绍了算法的概念和算法的5个基本特性,分别是输入.输出.有穷性.确定性和可行性.最后说阐述了一个好的算法需要遵守正确性.可读性.健壮性.时间效率高和存储量低.其实,实现效率和存储量就是时间复杂度和空间复杂度.本篇我们就围绕这两个"复杂度"展开

时间复杂度和空间复杂度的概念

算法复杂度 分为时间复杂度和空间复杂度.其作用: 时间复杂度是度量算法执行的时间长短:而空间复杂度是度量算法所需存储空间的大小. 时间复杂度 1.时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能 知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了.并且一个算法花费的时间与算法中语句 的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n).

0526.第二章:时间复杂度和空间复杂度[数据结构]

参考:本文为小甲鱼教学视频的学习笔记. 1.为什么要学习时间复杂度和空间复杂度?你说一个算法好另外一个算法不好,有什么判断依据?哪个算法效率高?怎么判断?那么就要学习时间和空间复杂度了. 思考:学习每一个知识之前都应该要考虑一下为什么要学习,学了有什么用处,什么场景下去用. 2.算法的效率高一般是指算法的执行时间,度量一个算法的执行时间有2种方式: 事后统计法:需要编写测试程序,万一不好花费大量的时间精力,赔了娘子又折兵(并且测试环境不同差别不是一般的大) 事前统计法:程序编写前,使用统计方法对

时间复杂度和空间复杂度[数据结构]

參考:本文为小甲鱼教学视频的学习笔记. 1.为什么要学习时间复杂度和空间复杂度?你说一个算法好另外一个算法不好,有什么推断根据?哪个算法效率高?怎么推断?那么就要学习时间和空间复杂度了. 思考:学习每个知识之前都应该要考虑一下为什么要学习,学了有什么用处,什么场景下去用. 2.算法的效率高通常是指算法的运行时间,度量一个算法的运行时间有2种方式: 事后统计法:须要编写測试程序.万一不好花费大量的时间精力,赔了娘子又折兵(而且測试环境不同区别不是一般的大) 事前统计法:程序编写前,使用统计方法对算

数据结构基本概念及算法和算法分析 -- 引自《新编数据结构习题与解析》(李春葆等著)

本文引自<新编数据结构习题与解析>(李春葆等著)第1章. 1. 数据结构的基本概念 1.1 数据 数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称.例如,整数.实数和字符串都是数据. 1.2 数据元素 数据元素也称为节点,是表示数据的基本单元,在计算机程序中通常作为一个整体进行考虑和处理. 1.3 数据项 数据项是数据的最小单位.数据元素可以由若干个数据项组成.例如,学生记录就是一个数据元素,它由学号.姓名.性别等数据项组成. 1.4 数据对象

数据结构基本概念和术语

基本概念和术语 2016年11月22日 9:24 数据是对客观事务的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称. 数据元素(data element)是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理.一个数据元素可以由若干数据项组成,数据项是数据的不可分割的最小单位.(Example:一本书的书目信息为一个数据元素,而书目信息中的每一项(如书名作者)为一个数据项) 数据对象(data object)是性质相同的数据元素的集合,是数据的一个子集.

数据结构基本概念和算法分析

一.数据结构基本概念 1. 数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称. 2. 数据元素:数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理.一个数据元素可由若干个数据项组成.数据项是数据的不可分割的最小单位. 3. 数据对象:数据对象是性质相同的数据元素的集合,是数据的一个子集,如整型数据对象. 4. 数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合.根据数据元素之间关系的不同特性,通常有下列4类

数据结构的概念和分类

1.1 基本概念    在计算机中, 数据结构就是指计算机存储, 组织数据方式    的描述, 主要描述数据元素之间的逻辑关系以及在计算机    中存储形式, 也要相互之间存在一种或者多种特定关系    的数据的集合        数据结构的选择决定了程序执行的时间效率    和存储效率的高低        计算机程序 = 数据结构 + 算法    1.2 数据结构的3个层次(1) 逻辑结构        - 主要是描述数据元素之间的逻辑关系 (2) 物理结构        - 主要描述数据结构