论文笔记之:DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns

DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns

CVPR 2016

  本文提出一种 分割图像 patch 的方法,

时间: 2024-10-09 20:45:14

论文笔记之:DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns的相关文章

论文笔记之:Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks NIPS 2015  摘要:本文提出一种 generative parametric model 能够产生高质量自然图像.我们的方法利用 Laplacian pyramid framework 的框架,从粗到细的方式,利用 CNN 的级联来产生图像.在金字塔的每一层,都用一个 GAN,我们的方法可以产生更高分辨率的图像.    引言:在计算

[论文理解] Why do deep convolutional networks generalize so poorly to small image transformations?

Why do deep convolutional networks generalize so poorly to small image transformations? Intro CNN的设计初衷是为了使得模型具有微小平移.旋转不变性,而实际上本文通过实验验证了现在比较流行的神经网络都已经丧失了这样的能力,甚至图像只水平移动一个像素,预测的结果都将会发生很大的变化.之所以如此,作者认为CNN的下采样背离了隆奎斯特采样定理,就连augmentation也并不能缓解微小变化不变性的丧失. I

论文笔记之:Deep Attention Recurrent Q-Network

Deep Attention Recurrent Q-Network 5vision groups  摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性.(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ ))   引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘.所以就有研究者提出了 Deep Recurre

论文笔记之:Deep Reinforcement Learning with Double Q-learning

Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特定条件下的动作值.实际上,之前是不知道是否这样的过高估计是 common的,是否对性能有害,以及是否能从主体上进行组织.本文就回答了上述的问题,特别的,本文指出最近的 DQN 算法,的确存在在玩 Atari 2600 时会 suffer from substantial overestimation

论文笔记之:Deep Attributes Driven Multi-Camera Person Re-identification

Deep Attributes Driven Multi-Camera Person Re-identification 2017-06-28  21:38:55    [Motivation] 本文的网络设计主要分为三个部分: Stage 1: Fully-supervised dCNN training Stage 2: Fine-tuning using attributes triplet loss Stage 3:Final fine-tuning on the combined da

论文笔记之:Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition

Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition   细粒度的识别(Fine-grained recognition)的挑战性主要来自于 类内差异(inter-class differences)在细粒度类别中通常是局部的,细微的:类间差异(intra-class differences)由于姿态的变换而导致很大.为了

论文笔记之: Hierarchical Convolutional Features for Visual Tracking

Hierarchical Convolutional Features for Visual Tracking  ICCV 2015 摘要:跟卢湖川的那个文章一样,本文也是利用深度学习各个 layer 之间提取出来的不同特征进行跟踪.因为各个层次提出来的 feature 具有不同的特征.并且将各个层级的特征用现有的 correlation filter 进行编码物体的外观,我们在每一个层上寻找最佳响应来定位物体. 引言:老套路的讨论了现有的跟踪问题存在的挑战以及现有方法取得的一些进展,并且引出了

论文笔记之:Deep Recurrent Q-Learning for Partially Observable MDPs

Deep Recurrent Q-Learning for Partially Observable MDPs  摘要:DQN 的两个缺陷,分别是:limited memory 和 rely on being able to perceive the complete game screen at each decision point. 为了解决这两个问题,本文尝试用 LSTM 单元 替换到后面的 fc layer,这样就产生了 Deep Recurrent Q-Network (DRQN),

论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding

Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 training batches 的优势,by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. 刚开始看这个摘要,有点懵逼,不怕,后面会知道这段英文是啥意思的. 引言部分