preprocessing

二、标准化(Standardization),或者去除均值和方差进行缩放

公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行.

将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1。

首先说明下sklearn中preprocessing库里面的scale函数使用方法:

sklearn.preprocessing.scale(X, axis=0, with_mean=True,with_std=True,copy=True)
  • X:数组或者矩阵
  • axis:int类型,初始值为0,axis用来计算均值 means 和标准方差 standard deviations. 如果是0,则单独的标准化每个特征(列),如果是1,则标准化每个观测样本(行)。
  • with_mean: boolean类型,默认为True,表示将数据均值规范到0
  • with_std: boolean类型,默认为True,表示将数据方差规范到1

一个简单的例子

假设现在我构造一个数据集X,然后想要将其标准化。下面使用不同的方法来标准化X:

方法一:使用sklearn.preprocessing.scale()函数

方法说明:

  • X.mean(axis=0)用来计算数据X每个特征的均值;
  • X.std(axis=0)用来计算数据X每个特征的方差;
  • preprocessing.scale(X)直接标准化数据X。

将代码整理到一个文件中:

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1.,  2.],
              [ 2.,  0.,  0.],
              [ 0.,  1., -1.]])
# calculate mean
X_mean = X.mean(axis=0)
# calculate variance
X_std = X.std(axis=0)
# standardize X
X1 = (X-X_mean)/X_std
# use function preprocessing.scale to standardize X
X_scale = preprocessing.scale(X)

最后X_scale的值和X1的值是一样的,前面是单独的使用数学公式来计算,主要是为了形成一个对比,能够更好的理解scale()方法。

方法2:sklearn.preprocessing.StandardScaler类

该方法也可以对数据X进行标准化处理,实例如下:

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1.,  2.],
              [ 2.,  0.,  0.],
              [ 0.,  1., -1.]])
scaler = preprocessing.StandardScaler()
X_scaled = scaler.fit_transform(X)

这两个方法得到最后的结果都是一样的。


三、将特征的取值缩小到一个范围(如0到1)

除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大值和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类来实现。

使用这种方法的目的包括:

  • 1、对于方差非常小的属性可以增强其稳定性;
  • 2、维持稀疏矩阵中为0的条目。

下面将数据缩至0-1之间,采用MinMaxScaler函数

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1.,  2.],
              [ 2.,  0.,  0.],
              [ 0.,  1., -1.]])
min_max_scaler = preprocessing.MinMaxScaler()
X_minMax = min_max_scaler.fit_transform(X)

最后输出:

array([[ 0.5       ,  0.        ,  1.        ],
       [ 1.        ,  0.5       ,  0.33333333],
       [ 0.        ,  1.        ,  0.        ]])

测试用例:

>>> X_test = np.array([[ -3., -1.,  4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5       ,  0.        ,  1.66666667]])

注意:这些变换都是对列进行处理。

当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_minmax=X_std/(X.max(axis=0)-X.min(axis=0))+X.min(axis=0))

四、正则化(Normalization)

正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。

该方法是文本分类和聚类分析中经常使用的向量空间模型(Vector Space Model)的基础.

Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。

方法1:使用sklearn.preprocessing.normalize()函数

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm=‘l2‘)
>>> X_normalized
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

方法2:sklearn.preprocessing.StandardScaler类

>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing
>>> normalizer
Normalizer(copy=True, norm=‘l2‘)

然后使用正则化实例来转换样本向量:

>>> normalizer.transform(X)
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])
>>> normalizer.transform([[-1.,  1., 0.]])
array([[-0.70...,  0.70...,  0.  ...]])

两种方法都可以,效果是一样的。


五、二值化(Binarization)

特征的二值化主要是为了将数据特征转变成boolean变量。在sklearn中,sklearn.preprocessing.Binarizer函数可以实现这一功能。实例如下:

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> binarizer = preprocessing.Binarizer().fit(X)  # fit does nothing
>>> binarizer
Binarizer(copy=True, threshold=0.0)
>>> binarizer.transform(X)
array([[ 1.,  0.,  1.],
       [ 1.,  0.,  0.],
       [ 0.,  1.,  0.]])

Binarizer函数也可以设定一个阈值,结果数据值大于阈值的为1,小于阈值的为0,实例代码如下:

>>> binarizer = preprocessing.Binarizer(threshold=1.1)
>>> binarizer.transform(X)
array([[ 0.,  0.,  1.],
       [ 1.,  0.,  0.],
       [ 0.,  0.,  0.]])

六、缺失值处理

由于不同的原因,许多现实中的数据集都包含有缺失值,要么是空白的,要么使用NaNs或者其它的符号替代。这些数据无法直接使用scikit-learn分类器直接训练,所以需要进行处理。幸运地是,sklearn中的Imputer类提供了一些基本的方法来处理缺失值,如使用均值、中位值或者缺失值所在列中频繁出现的值来替换。

下面是使用均值来处理的实例:

>>> import numpy as np
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values=‘NaN‘, strategy=‘mean‘, axis=0)
>>> imp.fit([[1, 2], [np.nan, 3], [7, 6]])
Imputer(axis=0, copy=True, missing_values=‘NaN‘, strategy=‘mean‘, verbose=0)
>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]
>>> print(imp.transform(X))
[[ 4.          2.        ]
 [ 6.          3.666...]
 [ 7.          6.        ]]

Imputer类同样支持稀疏矩阵:

>>> import scipy.sparse as sp
>>> X = sp.csc_matrix([[1, 2], [0, 3], [7, 6]])
>>> imp = Imputer(missing_values=0, strategy=‘mean‘, axis=0)
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values=0, strategy=‘mean‘, verbose=0)
>>> X_test = sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
>>> print(imp.transform(X_test))
[[ 4.          2.        ]
 [ 6.          3.666...]
 [ 7.          6.        ]]
时间: 2024-10-10 18:32:07

preprocessing的相关文章

scikit-learn学习之预处理(preprocessing)一

一.标准化,均值去除和按方差比例缩放 数据集的标准化:当个体特征太过或明显不遵从高斯正态分布时,标准化表现的效果较差.实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中心化. scale 1 >>> from sklearn import preprocessing 2 >>> import numpy as np 3 >>> X = np.array([[1., -1., 2.], [2., 0

scikit-learn:4.3. Preprocessing data(standardi/normali/binari..zation、encoding、missing value)

参考:http://scikit-learn.org/stable/modules/preprocessing.html 主要讲述The sklearn.preprocessing package的utility function and transformer classes,包括standardization.normalization.binarization.encoding categorical features.process missing value. 1.Standardiz

CS231n笔记4-Data Preprocessing, Weights Initialization与Batch Normalization

Data Preprocessing, Weights Initialization与Batch Normalization Data Preprocessing Weights Initialization与Batch Normalization 数据预处理Data Preprocessing 权重初始化Weights Initialization 让权重初始化为0 0方差1e-2标准差 0方差1标准差 Xavier Initialization 再改进 批归一化Batch Normaliza

sklearn.preprocessing OneHotEncoder——仅仅是数值型字段才可以,如果是字符类型字段则不能直接搞定

>>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5

tf.contrib.learn.preprocessing.VocabularyProcessor()

tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length, min_frequency=0, vocabulary=None, tokenizer_fn=None) 参数: max_document_length: 文档的最大长度.如果文本的长度大于最大长度,那么它会被剪切,反之则用0填充. min_frequency: 词频的最小值,出现次数小于最小词频则不会被收录到词表中. vocabulary: Cate

cluster KMeans need preprocessing scale????

Out: n_digits: 10, n_samples 1797, n_features 64 __________________________________________________________________________________ init time inertia homo compl v-meas ARI AMI silhouette k-means++ 0.30s 69432 0.602 0.650 0.625 0.465 0.598 0.146 rando

zabbix 3.4新功能值解析——Preprocessing预处理

Zabbix 3.4版本更新了许多新功能,其中一个监控项功能Preprocessing,根据官方说明文档,在监控项收集的数据存储到数据库前,预先对数据进行处理,使用效果超过预期.这个功能存放位置在创建item后多了一个Preprocessing选项卡,截图如下 简单解析下Preprocessing菜单: 转换 描述 Custom multiplier 将值乘以指定的整数或浮点值.使用此选项将以KB,MBps等接收的值转换为B,Bps,否则Zabbix无法正确设置前缀(K,M,G等).从Zabbi

sklearn.preprocessing.LabelBinarizer

sklearn.preprocessing.LabelBinarizer 原文地址:https://www.cnblogs.com/pengwang52/p/9668958.html

使用sklearn中preprocessing.Imputer实现对缺失值的处理

from sklearn import preprocessing import numpy as np X = [[1, 2], [np.nan, 4], [2, 6]] y = [[np.nan, 4], [1, 3], [2, 4]] imp = preprocessing.Imputer(missing_values='Nan', strategy='mean') imp.fit(X) print(imp.transform(X)) print(imp.transform(y)) 原文地