运动目标检测ViBe算法

一、运动目标检测简介  

视频中的运动目标检测这一块现在的方法实在是太多了。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。先简单从视频中的背景类型来讨论。
        静态背景下的目标检测,就是从序列图像中将实际的变化区域和背景区分开了。在背景静止的大前提下进行运动目标检测的方法有很多,这些方法比较侧重于背景扰动小噪声的消除,如:
1.背景差分法
2.帧间差分法
3.光流法
4.混合高斯模型(GMM)
5.码本(codebook)
还有这些方法的变种,例如三帧差分,五帧差分,或者这些方法的结合。
      运动背景下的目标检测,相对于静态背景而言,算法的思路就有所区别了,一般会更加侧重于匹配,需要进行图像的全局运动估计与补偿。因为在目标和背景同时运动的情况下,是无法简单的根据运动来判断的。运动背景下的运动目标检测算法也有很多,如
1.块匹配
2.光流估计
      这些方法总得来在不同的环境下说各有各自的特点吧,也不见得简单的算法就一定比复杂的要弱。有一些博客已经对这些方法进行了对比和评估,有兴趣的同学可以参考这些

(摘自http://blog.csdn.net/zouxy09/article/details/9622401
      推荐一个牛逼的库:http://code.google.com/p/bgslibrary/ 里面包含了各种背景减除的方法,可以让自己少做很多力气活。
      还有一篇评估的博文http://www.cnblogs.com/xrwang/archive/2010/02/21/ForegroundDetection.html

二、GMM算法简介


      不得不提的是其中的GMM算法(可以参考Adaptive background mixture models for real-time tracking),这种算法在我平时要用到运动检测的时候一般都会直接用,原因有两个,第一,效果确实不错,噪声可以很快消除,第二,opencv包含了GMM算法,可以直接调用,非常省事。

GMM简单讲,将输入图像的像素与背景模型进行对比,和背景模型相似性比较高的点视为背景,和背景模型相似性比较低的点视为前景,再利用形态学的方法进行运动目标提取。混合高斯模型是由K个(基本为3到5个)单高斯模型加权组成的。在获取新的一帧图像之后,如果当前图像中的像素点与该像素的K个模型中的某一个匹配度比较高,则视为背景,并将当前帧的像素作为一个新模型,更新已存在的K个模型。如果匹配度比较低,则为前景点。整个混合高斯模型算法主要是有方差和均值两个参数,对于这两个参数采取不同的学习机制,直接影响该算法的正确性、稳定性和收敛性。代码网上到处都有,例如http://blog.csdn.net/pi9nc/article/details/21717669,需要的同学可以去看看。

三 、ViBe算法

 

不过,我今天介绍的主角并不是GMM,而是ViBe算法。在网上各处看到ViBe算法是个很牛逼的算法,据说还把GMM给PK下去了,所以我就拜读了原文ViBe: a powerful random technique to estimate the background in video sequences
       ViBe算法是由Olivier Barnich 和 Marc Van Droogenbroeck在2011年提出的一种背景建模方法。该算法采用邻域像素来创建背景模型,通过比对背景模型和当前输入像素值来检测前景,可以细分为三个步骤:
       第一步,初始化单帧图像中每个像素点的背景模型。假设每一个像素和其邻域像素的像素值在空域上有相似的分布。基于这种假设,每一个像素模型都可以用其邻域中的像素来表示。为了保证背景模型符合统计学规律,邻域的范围要足够大。当输入第一帧图像时,即t=0时,像素的背景模型

其中,表示空域上相邻的像素值,表示当前点的像素值。在N次的初始化的过程中,中的像素点被选中的可能次数为L=1,2,3,…,N。

第二步,对后续的图像序列进行前景目标分割操作。当t=k时,像素点的背景模型为,像素值为。按照下面判断该像素值是否为前景。

这里上标r是随机选的;T是预先设置好的阈值。当满足符合背景#N次时,我们认为像素点为背景,否则为前景。

第三步,背景模型更新方法。ViBe算法的更新在时间和空间上都具有随机性。
      时间上的随机性。在N个背景模型中随机抽取一个,设为图像,图2-1表示了图像的x位置及其八邻域内的像素。当我们得到新的一帧图像时,如果图像中的x位置对应的像素被判断为背景,则需要被更新。这个抽取的过程体现了时间上的随机性。
空间上的随机性。在的八邻域中随机抽取一个像素,用的来替换掉,这体现了模型更新空间上的随机性。

以上便是更新的过程,即用来更新及其八邻域。采用八邻域更新的方法,可以去除由于获取的视频细微抖动(摄像机抖动、目标微动)而产生的重影和误差,让检测目标更加准确。

在一般情况下,背景并不会发生较大的变化,所以每次背景模型更新的个数UpdateNum应该是相近的。因此我们把第一帧背景更新的次数InitNum作为比较值,符合下面公式则对背景模型进行重新初始化,这样可以避免由于大面积的光照变化导致的误判。

视频中的初始帧可能是包含目标的,常规的背景建模算法往往无法快速消除Ghost区域,这对于前景检测是不利的。Vibe算法更新模型时利用了该像素值的空间传播特性,背景模型逐渐向外扩散,这也有利于Ghost区域的更快的识别并且消除。下面以ViBe算法下的交通视频前景检测为例

如图上图所示为ViBe算法下前景检测的效果,红色矩形框表示了出现的比较显著的Ghost区域。在第10帧之前,Ghost区域残留严重,随着模型的不断更新,Ghost区域不断消失在第40帧以后,Ghost区域已经完全消失了。说明了Vibe算法在前景检测和背景模型更新上的优势。

代码地址:http://download.csdn.net/detail/zhuangxiaobin/7360113

时间: 2024-12-21 21:20:31

运动目标检测ViBe算法的相关文章

opencv-视频处理-实时的前景检测-Vibe算法

vibe算法是一种像素级的前景检测算法,实时性高,内存占有率低,前景检测准确率高.但是会出现"鬼影",当然基于对鬼影的处理,也会有相应的对vibe算法的改进. 把下面三篇文章看明白,基本就会掌握vibe算法的过程: < ViBe: a powerful random technique to estimate the background in video sequences> <Background Subtraction: Experiments and Impr

基于局部二值相似性模式(LBSP)的运动目标检测算法

基于局部二值相似性模式(LBSP)的运动目标检测算法 [email protected] http://blog.csdn.net/kezunhai 本文根据论文:Improving background subtraction using local binary similarity patternsWACV2014的内容及自己的理解而成,如果想了解更多细节,请参考原文.该文章思想借鉴了VIBE,其实可以理解成是VIBE+LBP算子变种(LBSP)运动目标检测算法的组合.在VIBE中,算法主

【转】 运动目标检测跟踪主流算法

不全,需要慢慢补充 一.运动目标检测 (一)背景差 1.帧差 2.GMM 等 背景减算法可以对背景的光照变化.噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标.因此对于固定摄像头的情形,目前大多数的跟踪算法中都采用背景减算法来进行目标检测.背景减算法的局限性在于它需要一个静态的固定摄像头. (二)运动场 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化.这使得光流方法抗噪声能力较差,其应

运动目标检测跟踪各过程算法综述

运动目标检测跟踪各过程算法综述 图像预处理数字图像中的几种典型噪声有:高斯噪声来源于电子电路噪声和低照明度或高温带来的传感器噪声:椒盐噪声类似于随机分布在图像上的胡椒和盐粉微粒,主要由图像切割引起或变换域引起的误差:加性噪声是图像在传输中引进的信道噪声.一般来说,引入的都是加性随机噪声,可以采用均值滤波.中值滤波.高斯滤波等方法去除噪声,提高信噪比.均值滤波在噪声分布较平均,且峰值不是很高的情况下能够得到较好的应用:中值滤波对尖脉冲噪声的滤除有较好的效果,并且能突出图像的边缘和细节:高斯滤波对滤

静态背景下运动目标检测

前言:运动对象常用在视频监控领域,目的是从序列图像中将变化区域从背景图像中提取出来,运动区域的有效检测对目标分类.跟踪.行为理解等后期处理非常重要.根据摄像机与运动目标之间的关系可分为静态背景下的运动目标检(摄像机静止)和动态背景下的运动目标检测(摄像机也同时运动).项目中我用到的是静态背景下的运动目标检测,需通过固定摄像机检测运动物体,并完成抓取动作. 内容: 运动目标检测常用的方法一般分为两大类,一种是基于特征的方法,另一种是基于灰度的方法.基于特征的方法是依据图像的特征来检测运动目标,多用

运动目标检测--改进的背景减法

一.概述 本文提出了一种改进的基于背景减法的运动目标检测算法,该算法能自适应地对背景进行初始化和实时更新,并能有效克服光照等外界条件变化对运动目标检测的影响. 二.算法介绍 基于背景减法的视频运动目标检测主要包括预处理.背景建模.目标检测和后处理四个步骤.本文的算法流程如图 1 所示,算法中的预处理是对每一帧图像都进行去噪和亮度归一化处理,以抑制光照突变和噪声的影响:背景建模则采用改进的均值滤波法自动初始化背景,并不断实时更新背景,以克服环境光照变化所产生的影响:目标检测是在背景减法的基础上采用

OpenCV运动目标检测——帧间差,混合高斯模型方法

一.简单的帧间差方法 帧差法是在连续的图像序列中两个或三个相邻帧间采用基于像素的时间差分并且闽值化来提取图像中的运动区域. 代码: int _tmain(int argc, _TCHAR* argv[]) { VideoCapture capture("bike.avi"); if(!capture.isOpened()) return -1; double rate = capture.get(CV_CAP_PROP_FPS); int delay = 1000/rate; Mat

对这个运动目标检测方法实现的结果A Hybrid Algorithm for Moving Object Detection

最近在做烟火检测,需要用到运动检测,看到论文A System for Video Surveillance and Monitoring中的A Hybrid Algorithm for Moving Object Detection这个方法,我用opencv将其实现,代码下面会贴出,但是其的到的结果很差,不知道代码哪里出了问题,请高手给予指点,谢谢! 左图为原图,有图为用上面论文中的方法得到前景图像,[自己的代码可能写错了,请大神们给予指点谢谢] 代码如下: #include <stdio.h>

深度学习之目标检测常用算法原理+实践精讲

第1章 课程介绍本章节主要介绍课程的主要内容.核心知识点.课程涉及到的应用案例.深度学习算法设计通用流程.适应人群.学习本门课程的前置条件.学习后达到的效果等,帮助大家从整体上了解本门课程的整体脉络. 第2章 目标检测算法基础介绍本章节主要介绍目标检测算法的基本概念.传统的目标检测算法.目前深度学习目标检测主流方法(one-stage.two-stage.多任务网络).相关算法的基本流程.算法性能的评价指标.不同算法的优缺点和性能比较等,并结合实际的应用场景和案例来介绍目标检测算法的重要性和实用