matlab练习程序(k-means聚类)

聚类算法,不是分类算法。

分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。

聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。

这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。

所有资料中还是Andrew Ng介绍的明白。

首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。

初始化k个随机数据u1,u2,...,uk。这些xn和uk都是向量。

根据下面两个公式迭代就能求出最终所有的u,这些u就是最终所有类的中心位置。

公式一:

意思就是求出所有数据和初始化的随机数据的距离,然后找出距离每个初始数据最近的数据。

公式二:

意思就是求出所有和这个初始数据最近原始数据的距离的均值。

然后不断迭代两个公式,直到所有的u都不怎么变化了,就算完成了。

先看看一些结果:

用三个二维高斯分布数据画出的图:

通过对没有标记的原始数据进行kmeans聚类得到的分类,十字是最终迭代位置:

下面是Matlab代码,这里我把测试数据改为了三维了,函数是可以处理各种维度的。

main.m

clear all;
close all;
clc;

%第一类数据
mu1=[0 0 0];  %均值
S1=[0.3 0 0;0 0.35 0;0 0 0.3];  %协方差
data1=mvnrnd(mu1,S1,100);   %产生高斯分布数据

%%第二类数据
mu2=[1.25 1.25 1.25];
S2=[0.3 0 0;0 0.35 0;0 0 0.3];
data2=mvnrnd(mu2,S2,100);

%第三个类数据
mu3=[-1.25 1.25 -1.25];
S3=[0.3 0 0;0 0.35 0;0 0 0.3];
data3=mvnrnd(mu3,S3,100);

%显示数据
plot3(data1(:,1),data1(:,2),data1(:,3),‘+‘);
hold on;
plot3(data2(:,1),data2(:,2),data2(:,3),‘r+‘);
plot3(data3(:,1),data3(:,2),data3(:,3),‘g+‘);
grid on;

%三类数据合成一个不带标号的数据类
data=[data1;data2;data3];   %这里的data是不带标号的

%k-means聚类
[u re]=KMeans(data,3);  %最后产生带标号的数据,标号在所有数据的最后,意思就是数据再加一维度
[m n]=size(re);

%最后显示聚类后的数据
figure;
hold on;
for i=1:m
    if re(i,4)==1
         plot3(re(i,1),re(i,2),re(i,3),‘ro‘);
    elseif re(i,4)==2
         plot3(re(i,1),re(i,2),re(i,3),‘go‘);
    else
         plot3(re(i,1),re(i,2),re(i,3),‘bo‘);
    end
end
grid on;

KMeans.m

%N是数据一共分多少类
%data是输入的不带分类标号的数据
%u是每一类的中心
%re是返回的带分类标号的数据
function [u re]=KMeans(data,N)
    [m n]=size(data);   %m是数据个数,n是数据维数
    ma=zeros(n);        %每一维最大的数
    mi=zeros(n);        %每一维最小的数
    u=zeros(N,n);       %随机初始化,最终迭代到每一类的中心位置
    for i=1:n
       ma(i)=max(data(:,i));    %每一维最大的数
       mi(i)=min(data(:,i));    %每一维最小的数
       for j=1:N
            u(j,i)=ma(i)+(mi(i)-ma(i))*rand();  %随机初始化,不过还是在每一维[min max]中初始化好些
       end
    end

    while 1
        pre_u=u;            %上一次求得的中心位置
        for i=1:N
            tmp{i}=[];      % 公式一中的x(i)-uj,为公式一实现做准备
            for j=1:m
                tmp{i}=[tmp{i};data(j,:)-u(i,:)];
            end
        end

        quan=zeros(m,N);
        for i=1:m        %公式一的实现
            c=[];
            for j=1:N
                c=[c norm(tmp{j}(i,:))];
            end
            [junk index]=min(c);
            quan(i,index)=norm(tmp{index}(i,:));
        end

        for i=1:N            %公式二的实现
           for j=1:n
                u(i,j)=sum(quan(:,i).*data(:,j))/sum(quan(:,i));
           end
        end

        if norm(pre_u-u)<0.1  %不断迭代直到位置不再变化
            break;
        end
    end

    re=[];
    for i=1:m
        tmp=[];
        for j=1:N
            tmp=[tmp norm(data(i,:)-u(j,:))];
        end
        [junk index]=min(tmp);
        re=[re;data(i,:) index];
    end

end

转载自:http://www.cnblogs.com/tiandsp/archive/2013/04/24/3040883.html

时间: 2024-10-10 13:53:32

matlab练习程序(k-means聚类)的相关文章

k means聚类过程

k-means是一种非监督 (从下图0 当中我们可以看到训练数据并没有标签标注类别)的聚类算法 0.initial 1.select centroids randomly 2.assign points 3.update centroids 4.reassign points 5.update centroids 6.reassign points 7.iteration reference: https://www.naftaliharris.com/blog/visualizing-k-me

k均值聚类

目录 一.k均值简介 二.应用简介 三.算法 四.选择合适的K 五.具体实例 一.k均值简介 K均值聚类是一种无监督学习,对未标记的数据(即没有定义类别或组的数据)进行分类. 该算法的目标是在数据中找到由变量K标记的组.该算法迭代地工作基于所提供的特征,将每个数据点分配给K个组中的一个. 基于特征相似性对数据点进行聚类. K均值聚类算法的结果是: 1.K簇的质心,可用于标记新数据 2.训练数据的标签(每个数据点分配给一个集群) 二.应用简介 K均值聚类算法用于查找未在数据中明确标记的组.这可用于

机器学习--k均值聚类(k-means)算法

一.基本原理 分类是指分类器根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类.分类被称为监督学习.如果训练集的样本没有标注类别,那么就需要用到聚类.聚类是把相似的样本聚成一类,这种相似性通常以距离来度量.聚类被称为无监督学习. 聚类是指根据"物以类聚"的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程.它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似.与分类规则不同,进行聚类前并不知道

【转载】matlab练习程序(图像Haar小波变换)

matlab练习程序(图像Haar小波变换) 关于小波变换我只是有一个很朴素了理解.不过小波变换可以和傅里叶变换结合起来理解. 傅里叶变换是用一系列不同频率的正余弦函数去分解原函数,变换后得到是原函数在正余弦不同频率下的系数. 小波变换使用一系列的不同尺度的小波去分解原函数,变换后得到的是原函数在不同尺度小波下的系数. 不同的小波通过平移与尺度变换分解,平移是为了得到原函数的时间特性,尺度变换是为了得到原函数的频率特性. 小波变换步骤: 1.把小波w(t)和原函数f(t)的开始部分进行比较,计算

matlab练习程序(生成黑白网格)

提供了两种生成方法,一个是自己编程实现,比较灵活:另一个是调用系统的checkerboard函数,似乎只能生成8*8网格. 至于用途,也许可以用来下国际象棋. 自己函数生成: 系统函数生成: 代码如下: clear all;close all;clc h=256; w=256; n=8; img=zeros(h,w); flag=1; for y=1:h for x=1:w if flag>0 img(y,x)=255; end if mod(x,int8(w/n))==0 flag=-flag

第十篇:K均值聚类(KMeans)

前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类结果描述:4. 将聚类结果图形化展示:5. 选择最优center并最终确定聚类方案:6. 图形化展示不同方案效果并提交分析报表. 人口出生/死亡率聚类分析 - K均值聚类 1. 载入并了解数据集 1.1 从网上下载一份txt格式的关于人口出生率统计的数据(countries.txt).其内容大致如下

机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定,可视化数据分布,直观确定即可): 2 遍历数据集的每个实例,计算其到每个质心的相似度,这里也就是欧氏距离:把每个实例都分配到距离最近的质心的那一类,用一个二维数组数据结构保存,第一列是最近质心序号,第二列是距离: 3 根据二维数组保存的数据,重新计算每个聚簇新的质心: 4 迭代2 和 3,直到收敛

R与数据分析旧笔记(十五) 基于有代表性的点的技术:K中心聚类法

基于有代表性的点的技术:K中心聚类法 基于有代表性的点的技术:K中心聚类法 算法步骤 随机选择k个点作为"中心点" 计算剩余的点到这个k中心点的距离,每个点被分配到最近的中心点组成聚簇 随机选择一个非中心点,用它代替某个现有的中心点,计算这个代换的总代价S 如果S<0,则用代替,形成新的k个中心点集合 重复2,直至中心点集合不发生变化 K中心法的实现:PAM PAM使用离差平方和来计算成本S(类似于ward距离的计算) R语言的cluster包实现了PAM K中心法的优点:对于&

matlab练习程序(旋转、径向模糊)

还记得过去写过径向模糊,不过当时效果似乎不好. 这次效果还可以,程序中用的算法是: 1.求当前处理点和图像中心点之间的距离r与角度ang; 2.通过对r的修改得到径向模糊. 3.通过对ang的修改得到旋转模糊. 一看代码就能全部明白,不仔细解释了. 原图如下: 处理后效果: matlab代码如下: clear all;close all;clc img=imread('lena.jpg'); [h w]=size(img); imshow(img) imgn=zeros(h,w); for y=