BZOJ 1046: [HAOI2007]上升序列(LIS)

题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小.

-------------------------------------------------------------------

#include<cstdio>

#define rep(i,n) for(int i=0;i<n;++i)

using namespace std;

const int maxn=10005;

const int inf=0x7fffffff;

int a[maxn];

int g[maxn];

int d[maxn];

int lowerBound(int l,int r,int v) {

int mid;

while(l<r) {

mid=l+(r-l)/2;

if(g[mid]<=v) r=mid;

else l=mid+1;

}

return l;

}

int main()

{

freopen("test.in","r",stdin);

freopen("test.out","w",stdout);

int n,m;

scanf("%d",&n);

rep(i,n) { scanf("%d",&a[i]); g[i+1]=-inf; }

for(int i=n-1;i>=0;--i) {

int k=lowerBound(1,n,a[i]);

d[i]=k;

g[k]=a[i];

}

scanf("%d",&m);

while(m--) {

int l;

scanf("%d",&l);

if(g[l]==-inf) printf("Impossible");

else {

int last=-inf;

rep(i,n) if(d[i]>=l && a[i]>last) {

printf("%d",a[i]);

if(0==--l) break;

last=a[i];

printf(" ");

}

}

printf("\n");

}

return 0;

}

--------------------------------------------------------------------

1046: [HAOI2007]上升序列

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2843  Solved: 949
[Submit][Status][Discuss]

Description

对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M行每行一个数L,表示要询问长度为L的上升序列。

Output

对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.

Sample Input

6
3 4 1 2 3 6
3
6
4
5

Sample Output

Impossible
1 2 3 6
Impossible

HINT

数据范围

N<=10000

M<=1000

时间: 2024-10-07 06:28:57

BZOJ 1046: [HAOI2007]上升序列(LIS)的相关文章

BZOJ 1046: [HAOI2007]上升序列 LIS -dp

1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Status][Discuss] Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm).那么就称P为S的一个上升序列.如果有多

bzoj 1046 : [HAOI2007]上升序列 dp

题目链接 1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3620  Solved: 1236[Submit][Status][Discuss] Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm).那么就称P为S的一个上升序列

[BZOJ 1046] [HAOI2007] 上升序列 【DP】

题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最长上升子序列长度,输出 Impossible. 否则,从 1 向 n 枚举,贪心,如果 f[i] >= l,就选取 a[i],同时 --l,然后继续向后找比 a[i] 大的第一个数判断是否 f[i] >= l (这时l已经减小了1). 代码 #include <iostream> #i

BZOJ 1046 [HAOI2007]上升序列

题解:f[i]表示以i开头的最长上升子序列长度 贪心先选下标最小的符合要求的元素 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn=10009; int n,T; int maxlen; int a[maxn]; int b[maxn],nn; int c[maxn]; int lowbit

bzoj 1046: [HAOI2007]上升序列【dp+二分】

先从后到前做一个最长下降子序列的dp,记录f[i],我这里用的是二分(其实树状数组比较显然) 然后对于询问,超出最长上升子序列的直接输出:否则从前到后扫,f[i]>=x&&a[i]>la(上个选的)就选,因为这时第一个出现的一定是符合条件的中最小的最小的 #include<iostream> #include<cstdio> using namespace std; const int N=10005; int n,a[N],m,x,f[N],p[N],

【BZOJ】1046 : [HAOI2007]上升序列

1046: [HAOI2007]上升序列 题意:给定S={a1,a2,a3,…,an}问是否存在P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm),若存在多组符合长度为m的递增子序列,则输出以序号字典序最小的:并非是数值 Sample Input 6 3 4 1 2 3 6 3 6 4 5 Sample Output Impossible 1 2 3 6 Impossible 数据范围 N&

【BZOJ 1046】 1046: [HAOI2007]上升序列

1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < - < xm)且( ax1 < ax2 < - < axm).那么就称P为S的一个上升序列.如果有多个P满足条件,那么我们想求字典序最小的那个.任务给出S序列,给出若干询问.对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先x1最小,如果不唯一,再看x2

1046: [HAOI2007]上升序列(dp)

1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4999  Solved: 1738[Submit][Status][Discuss] Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax2 < … < axm).那么就称P为S的一个上升序列.如果有多

【BZOJ 1046】 [HAOI2007]上升序列

1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2688  Solved: 891 [Submit][Status] Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < - < xm)且( ax1 < ax2 < - < axm).那么就称P为S的一个上升序列.如果有多个P满足条件,那