2013计算机视觉代码合集

申明:本文非原创,原文转载自:http://www.yuanyong.org/blog/cv/cv-code

一、特征提取Feature Extraction

二、图像分割Image Segmentation

  • Normalized Cut [1] [Matlab code]
  • Gerg Mori’ Superpixel code [2] [Matlab code]
  • Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]
  • Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]
  • OWT-UCM Hierarchical Segmentation [5] [Resources]
  • Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]
  • Quick-Shift [7] [VLFeat]
  • SLIC Superpixels [8] [Project]
  • Segmentation by Minimum Code Length [9] [Project]
  • Biased Normalized Cut [10] [Project]
  • Segmentation Tree [11-12] [Project]
  • Entropy Rate Superpixel Segmentation [13] [Code]
  • Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]
  • Ef?cient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]
  • Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]
  • Random Walks for Image Segmentation[Paper][Code]
  • Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]
  • An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]
  • Geodesic Star Convexity for Interactive Image Segmentation[Project]
  • Contour Detection and Image Segmentation Resources[Project][Code]
  • Biased Normalized Cuts[Project]
  • Max-flow/min-cut[Project]
  • Chan-Vese Segmentation using Level Set[Project]
  • A Toolbox of Level Set Methods[Project]
  • Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]
  • Improved C-V active contour model[Paper][Code]
  • A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]
  • Level Set Method Research by Chunming Li[Project]
  • ClassCut for Unsupervised Class Segmentation[code]
  • SEEDS: Superpixels Extracted via Energy-Driven Sampling [Project][other]

三、目标检测Object Detection

  • A simple object detector with boosting [Project]
  • INRIA Object Detection and Localization Toolkit [1] [Project]
  • Discriminatively Trained Deformable Part Models [2] [Project]
  • Cascade Object Detection with Deformable Part Models [3] [Project]
  • Poselet [4] [Project]
  • Implicit Shape Model [5] [Project]
  • Viola and Jones’s Face Detection [6] [Project]
  • Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]
  • Hand detection using multiple proposals[Project]
  • Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]
  • Discriminatively trained deformable part models[Project]
  • Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]
  • Image Processing On Line[Project]
  • Robust Optical Flow Estimation[Project]
  • Where‘s Waldo: Matching People in Images of Crowds[Project]
  • Scalable Multi-class Object Detection[Project]
  • Class-Specific Hough Forests for Object Detection[Project]
  • Deformed Lattice Detection In Real-World Images[Project]
  • Discriminatively trained deformable part models[Project]

四、显著性检测Saliency Detection

  • Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]
  • Frequency-tuned salient region detection [2] [Project]
  • Saliency detection using maximum symmetric surround [3] [Project]
  • Attention via Information Maximization [4] [Matlab code]
  • Context-aware saliency detection [5] [Matlab code]
  • Graph-based visual saliency [6] [Matlab code]
  • Saliency detection: A spectral residual approach. [7] [Matlab code]
  • Segmenting salient objects from images and videos. [8] [Matlab code]
  • Saliency Using Natural statistics. [9] [Matlab code]
  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]
  • Learning to Predict Where Humans Look [11] [Project]
  • Global Contrast based Salient Region Detection [12] [Project]
  • Bayesian Saliency via Low and Mid Level Cues[Project]
  • Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]
  • Saliency Detection: A Spectral Residual Approach[Code]

五、图像分类、聚类Image Classification, Clustering

  • Pyramid Match [1] [Project]
  • Spatial Pyramid Matching [2] [Code]
  • Locality-constrained Linear Coding [3] [Project] [Matlab code]
  • Sparse Coding [4] [Project] [Matlab code]
  • Texture Classification [5] [Project]
  • Multiple Kernels for Image Classification [6] [Project]
  • Feature Combination [7] [Project]
  • SuperParsing [Code]
  • Large Scale Correlation Clustering Optimization[Matlab code]
  • Detecting and Sketching the Common[Project]
  • Self-Tuning Spectral Clustering[Project][Code]
  • User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]
  • Filters for Texture Classification[Project]
  • Multiple Kernel Learning for Image Classification[Project]
  • SLIC Superpixels[Project]

六、抠图Image Matting

  • A Closed Form Solution to Natural Image Matting [Code]
  • Spectral Matting [Project]
  • Learning-based Matting [Code]

七、目标跟踪Object Tracking

  • A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]
  • Object Tracking via Partial Least Squares Analysis[Paper][Code]
  • Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]
  • Online Visual Tracking with Histograms and Articulating Blocks[Project]
  • Incremental Learning for Robust Visual Tracking[Project]
  • Real-time Compressive Tracking[Project]
  • Robust Object Tracking via Sparsity-based Collaborative Model[Project]
  • Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]
  • Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]
  • Superpixel Tracking[Project]
  • Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]
  • Online Multiple Support Instance Tracking [Paper][Code]
  • Visual Tracking with Online Multiple Instance Learning[Project]
  • Object detection and recognition[Project]
  • Compressive Sensing Resources[Project]
  • Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[Project]
  • Tracking-Learning-Detection[Project][OpenTLD/C++ Code]
  • the HandVu:vision-based hand gesture interface[Project]
  • Learning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities[Project]

八、Kinect

九、3D相关:

  • 3D Reconstruction of a Moving Object[Paper] [Code]
  • Shape From Shading Using Linear Approximation[Code]
  • Combining Shape from Shading and Stereo Depth Maps[Project][Code]
  • Shape from Shading: A Survey[Paper][Code]
  • A Spatio-Temporal Descriptor based on 3D Gradients (HOG3D)[Project][Code]
  • Multi-camera Scene Reconstruction via Graph Cuts[Paper][Code]
  • A Fast Marching Formulation of Perspective Shape from Shading under Frontal Illumination[Paper][Code]
  • Reconstruction:3D Shape, Illumination, Shading, Reflectance, Texture[Project]
  • Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers[Code]
  • Learning 3-D Scene Structure from a Single Still Image[Project]

十、机器学习算法:

  • Matlab class for computing Approximate Nearest Nieghbor (ANN) [Matlab class providing interface toANN library]
  • Random Sampling[code]
  • Probabilistic Latent Semantic Analysis (pLSA)[Code]
  • FASTANN and FASTCLUSTER for approximate k-means (AKM)[Project]
  • Fast Intersection / Additive Kernel SVMs[Project]
  • SVM[Code]
  • Ensemble learning[Project]
  • Deep Learning[Net]
  • Deep Learning Methods for Vision[Project]
  • Neural Network for Recognition of Handwritten Digits[Project]
  • Training a deep autoencoder or a classifier on MNIST digits[Project]
  • THE MNIST DATABASE of handwritten digits[Project]
  • Ersatz:deep neural networks in the cloud[Project]
  • Deep Learning [Project]
  • sparseLM : Sparse Levenberg-Marquardt nonlinear least squares in C/C++[Project]
  • Weka 3: Data Mining Software in Java[Project]
  • Invited talk "A Tutorial on Deep Learning" by Dr. Kai Yu (余凯)[Video]
  • CNN - Convolutional neural network class[Matlab Tool]
  • Yann LeCun‘s Publications[Wedsite]
  • LeNet-5, convolutional neural networks[Project]
  • Training a deep autoencoder or a classifier on MNIST digits[Project]
  • Deep Learning 大牛Geoffrey E. Hinton‘s HomePage[Website]
  • Multiple Instance Logistic Discriminant-based Metric Learning (MildML) and Logistic Discriminant-based Metric Learning (LDML)[Code]
  • Sparse coding simulation software[Project]
  • Visual Recognition and Machine Learning Summer School[Software]

十一、目标、行为识别Object, Action Recognition

  • Action Recognition by Dense Trajectories[Project][Code]
  • Action Recognition Using a Distributed Representation of Pose and Appearance[Project]
  • Recognition Using Regions[Paper][Code]
  • 2D Articulated Human Pose Estimation[Project]
  • Fast Human Pose Estimation Using Appearance and Motion via Multi-Dimensional Boosting Regression[Paper][Code]
  • Estimating Human Pose from Occluded Images[Paper][Code]
  • Quasi-dense wide baseline matching[Project]
  • ChaLearn Gesture Challenge: Principal motion: PCA-based reconstruction of motion histograms[Project]
  • Real Time Head Pose Estimation with Random Regression Forests[Project]
  • 2D Action Recognition Serves 3D Human Pose Estimation[Project]
  • A Hough Transform-Based Voting Framework for Action Recognition[Project]
  • Motion Interchange Patterns for Action Recognition in Unconstrained Videos[Project]
  • 2D articulated human pose estimation software[Project]
  • Learning and detecting shape models [code]
  • Progressive Search Space Reduction for Human Pose Estimation[Project]
  • Learning Non-Rigid 3D Shape from 2D Motion[Project]

十二、图像处理:

  • Distance Transforms of Sampled Functions[Project]
  • The Computer Vision Homepage[Project]
  • Efficient appearance distances between windows[code]
  • Image Exploration algorithm[code]
  • Motion Magnification 运动放大 [Project]
  • Bilateral Filtering for Gray and Color Images 双边滤波器 [Project]
  • A Fast Approximation of the Bilateral Filter using a Signal Processing Approach [Project]

十三、一些实用工具:

  • EGT: a Toolbox for Multiple View Geometry and Visual Servoing[Project] [Code]
  • a development kit of matlab mex functions for OpenCV library[Project]
  • Fast Artificial Neural Network Library[Project]

十四、人手及指尖检测与识别:

  • finger-detection-and-gesture-recognition [Code]
  • Hand and Finger Detection using JavaCV[Project]
  • Hand and fingers detection[Code]

十五、场景解释:

  • Nonparametric Scene Parsing via Label Transfer [Project]

十六、光流Optical flow

  • High accuracy optical flow using a theory for warping [Project]
  • Dense Trajectories Video Description [Project]
  • SIFT Flow: Dense Correspondence across Scenes and its Applications[Project]
  • KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker [Project]
  • Tracking Cars Using Optical Flow[Project]
  • Secrets of optical flow estimation and their principles[Project]
  • implmentation of the Black and Anandan dense optical flow method[Project]
  • Optical Flow Computation[Project]
  • Beyond Pixels: Exploring New Representations and Applications for Motion Analysis[Project]
  • A Database and Evaluation Methodology for Optical Flow[Project]
  • optical flow relative[Project]
  • Robust Optical Flow Estimation [Project]
  • optical flow[Project]

十七、图像检索Image Retrieval

  • Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval [Paper][code]

十八、马尔科夫随机场Markov Random Fields

  • Markov Random Fields for Super-Resolution [Project]
  • A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors [Project]

十九、运动检测Motion detection

  • Moving Object Extraction, Using Models or Analysis of Regions [Project]
  • Background Subtraction: Experiments and Improvements for ViBe [Project]
  • A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications [Project]
  • changedetection.net: A new change detection benchmark dataset[Project]
  • ViBe - a powerful technique for background detection and subtraction in video sequences[Project]
  • Background Subtraction Program[Project]
  • Motion Detection Algorithms[Project]
  • Stuttgart Artificial Background Subtraction Dataset[Project]
  • Object Detection, Motion Estimation, and Tracking[Project]
时间: 2024-10-10 14:15:21

2013计算机视觉代码合集的相关文章

转载:2013计算机视觉代码合集

转载,原文地址http://blog.csdn.net/daoqinglin/article/details/23607079 -------------------------------------------------------------------------- 来源: http://www.yuanyong.org/cv/cv-code-one.html http://www.yuanyong.org/cv/cv-code-two.html http://www.yuanyong

2013计算机视觉代码合集三

Attributes and Semantic Features Relative Attributes – Modified implementation of RankSVM to train Relative Attributes (ICCV 2011). Object Bank – Implementation of object bank semantic features (NIPS 2010). See also ActionBank Classemes, Picodes, and

2013计算机视觉代码合集四

特征提取 SURF特征: http://www.vision.ee.ethz.ch/software/index.de.html(当然这只是其中之一) LBP特征(一种纹理特征):http://www.comp.hkbu.edu.hk/~icpr06/tutorials/Pietikainen.html Fast Corner Detection(OpenCV中的Fast算法):FAST Corner Detection -- Edward Rosten 机器视觉 A simple object

2013计算机视觉代码合集二

Feature Detection and Description General Libraries: VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, M

2013计算机视觉代码合集一

引自:http://cvchina.net/post/50.html 一.特征提取Feature Extraction: SIFT [1] [Demo program][SIFT Library] [VLFeat] PCA-SIFT [2] [Project] Affine-SIFT [3] [Project] SURF [4] [OpenSURF] [Matlab Wrapper] Affine Covariant Features [5] [Oxford project] MSER [6]

UIUC同学Jia-Bin Huang收集的计算机视觉代码合集

[转载]UIUC同学Jia-Bin Huang收集的计算机视觉代码合集 原文地址:UIUC同学Jia-Bin Huang收集的计算机视觉代码合集作者:千里8848 UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/index.html 这些代码很实用,可以让我们站在巨人的肩膀上~~ Topic Resources References Feature

计算机视觉代码合集

这些代码很实用,可以让我们站在巨人的肩膀上~~ Topic Resources References Feature Extraction ·         SIFT [1] [Demo program][SIFT Library] [VLFeat] ·         PCA-SIFT [2] [Project] ·         Affine-SIFT [3] [Project] ·         SURF [4] [OpenSURF] [Matlab Wrapper] ·      

计算机视觉与模式识别代码合集第二版two

Topic Name Reference code Image Segmentation Segmentation by Minimum Code Length AY Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007 code Image Segmentation Normalized Cut

计算机视觉与模式识别代码合集第二版three

计算机视觉与模式识别代码合集第二版three     Topic Name Reference code Optical Flow Horn and Schunck's Optical Flow   code Optical Flow Black and Anandan's Optical Flow   code Pose Estimation Training Deformable Models for Localization Ramanan, D. "Learning to Parse I