Ultra-QuickSort (树状数组离散化)

题目原意是用归并排序,刚学树状数组,就用了下

树状数组的离散化

离散化,是数据范围太大是所借用的利器,举个例子,有四个数99999999 1 123 1583 数据范围太大,而树状数组中的c数组开的范围是数据的范围,这时候就需要离散化,把四个数一次标号为1 2 3 4(即第一个数,第二个数。。。),按键值排序之后 依次为2 3 4 1(即从小到大排序为第二个数,第三个数。。。),所以,第二个数是最小的,即f[2]=1,f[3]=2,f[4]=3,f[1]=4,也就是把键值变为了1~n,相对大小还是不变的,即4
 1 2 3。

用f[]数组存放相对大小,要引用原数组第i个的元素,就是f[i]了

题目给的数据有maxn=500000,完全逆序的逆序数为等差数列的前n项和=(maxn-1)*maxn/2   , 差不多是10的13次方,所以要用longlong 存

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define maxn 500010
typedef long long LL;
using namespace std;
struct node
{
    int x,i;
}a[maxn];
int n;
int c[maxn],f[maxn];
bool cmp(node x,node y)
{
    return x.x<y.x;
}
int lowbit(int x)
{
    return x&-x;
}
void update(int x,int v)
{
    while(x<=n){
        c[x]+=v;
        x+=lowbit(x);
    }
}

int getsum(int x)
{
    int sum=0;
    while(x>0){
        sum+=c[x];
        x-=lowbit(x);
    }
    return sum;
}
int main()
{
    while(~scanf("%d",&n),n){
        memset(c,0,sizeof(c));
        memset(f,0,sizeof f);
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i].x);
            a[i].i=i;//在原数组的下标
        }
        sort(a+1,a+n+1,cmp);//开始离散化
        f[a[1].i]=1;//从最小的开始
        for(int i=2;i<=n;i++){
            if(a[i].x!=a[i-1].x){
                f[a[i].i]=i;
            }
            else f[a[i].i]=f[a[i-1].i];
        }//离散化结束
        LL ans=0;
        for(int i=1;i<=n;i++){
            update(f[i],1);
            ans+=i-getsum(f[i]);//第i个数的逆序数=i-前面有多少个比它小的=就是前面多少个比它大的  ,getsum(i)就是前面有多少个数比i小
        }                       //也能写成 ans+=getsum(n)-getsum(i)
        cout<<ans<<endl;
    }
    return 0;
}

Ultra-QuickSort (树状数组离散化)

时间: 2024-10-29 01:04:42

Ultra-QuickSort (树状数组离散化)的相关文章

HDU 2227 Find the nondecreasing subsequences (DP+树状数组+离散化)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2227 Find the nondecreasing subsequences                                  Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)                                             

BZOJ 1227 [SDOI2009] 虔诚的墓主人 离线+树状数组+离散化

鸣谢:140142耐心讲解缕清了我的思路 题意:由于调这道题调的头昏脑涨,所以题意自己搜吧,懒得说. 方法:离线+树状数组+离散化 解析:首先深表本蒟蒻对出题人的敬(bi)意(shi).这道题简直丧心病狂,看完题后大脑一片空白,整个人都不好了,刚开始的思路是什么呢?暴力思想枚举每个墓碑,然后计算每个墓碑的虔诚度,然后再来统计.不过看看数据范围呢?10^9*10^9的矩阵,最多才10^5个树,光枚举就已经超时了,所以肯定不行.(不过要是考试真没思路我就那么搞了- -!) 然后也想到来枚举墓碑,不过

求逆序数模板(树状数组+离散化 || 归并排序法)

一篇不错的讲解:http://www.cnblogs.com/shenshuyang/archive/2012/07/14/2591859.html 代码如下:(树状数组+离散化) #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn=500017; int n; int aa[maxn

hdu4325 树状数组+离散化

http://acm.hdu.edu.cn/showproblem.php?pid=4325 Problem Description As is known to all, the blooming time and duration varies between different kinds of flowers. Now there is a garden planted full of flowers. The gardener wants to know how many flower

高桥低桥(树状数组离散化)

1335: 高桥和低桥 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 362  Solved: 62 [Submit][Status][Web Board] Description 有个脑筋急转弯是这样的:有距离很近的一高一低两座桥,两次洪水之后高桥被淹了两次,低桥却只被淹了一次,为什么?答案是:因为低桥太低了,第一次洪水退去之后水位依然在低桥之上,所以不算"淹了两次".举例说明: 假定高桥和低桥的高度分别是5和2,初始水位为1 第一次

Ultra-QuickSort(树状数组 + 离散化)

Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input seque

求逆序数数目(树状数组+离散化)

404在玩忍者印记(Mark of the Ninja)操纵忍者时遇到这样一个场景,两栋大楼之间有许多绳索,从侧面看,就像这个样子: 我们的忍者非常有好奇心,他可以观察到每个绳索的端点在两栋楼的高度,想知道这些绳索有多少个交点(图中黑色的点).他观察到不会建筑上不会有一点上有两个绳索,并且没有三条绳索共点. 输入描述 第一行:整数T,代表有T组数据. (1 <= T <= 100) 下一行:整数N,代表有N条绳索. (1 <= N <= 100000) 接下来Na行给出两个整数A_

POJ 2299 Ultra-QuickSort(树状数组+离散化)

题目大意: 就是说,给你一个序列,然后让你求出这个序列有多少个逆序对,所谓逆序对就是对于这个序列中的元素有a[i]>a[j] 且i<j存在. 其实原题是这样说的,给你一个序列,让你用最少的交换次数使得这个序列变成从小到大的排序. 解题思路: 一开始是想到了归并的思路,但是没有能写出来代码. 先来来范围吧,序列的长度n<=500000+4.   并且每个a[i]<=999 999 999,对于tree[i],我们知道这个数组肯定是放不下的,所以 我们要进行离散化的处理,关于离散化的处

World is Exploding 树状数组+离散化

Given a sequence A with length n,count how many quadruple (a,b,c,d) satisfies: a≠b≠c≠d,1≤a<b≤n,1≤c<d≤n,Aa<Ab,Ac>Ada≠b≠c≠d,1≤a<b≤n,1≤c<d≤n,Aa<Ab,Ac>Ad. InputThe input consists of multiple test cases. Each test case begin with an int