opencv 支持向量机SVM分类器

支持向量机SVM是从线性可分情况下的最优分类面提出的。所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小。推广到高维空间,最优分类线就成为最优分类面。

支持向量机是利用分类间隔的思想进行训练的,它依赖于对数据的预处理,即,在更高维的空间表达原始模式。通过适当的到一个足够高维的非线性映射,分别属于两类的原始数据就能够被一个超平面来分隔。如下图所示:

空心点和实心点分别代表两个不同的类,H为将两类没有错误的区分开的分类面,同时,它也是一个最优的分类面。原因正如前面所述,当以H为分类面时,分类间隔最大,误差最小。而这里的之间的距离margin就是两类之间的分类间隔。支持向量机将数据从原始空间映射到高维空间的目的就是找到一个最优的分类面从而使得分类间隔margin最大。而那些定义最优分类超平面的训练样本,也就是上图中过的空心点和实心点,就是支持向量机理论中所说的支持向量。显然,所谓支持向量其实就是最难被分类的那些向量,然而,从另一个角度来看,它们同时也是对求解分类任务最有价值的模式。

支持向量机的基本思想可以概括为:首先通过非线性变换将输入空间变换到一个高维空间,然后在这个新空间中求取最优线性分类面,而这种非线性变换是通过定义适当的内积函数来实现的。支持向量机求得的分类函数形式上类似于一个神经网络,其输出是若干中间层节点的线性组合,而每一个中间层节点对应于输入样本与一个支持向量的内积,因此也被叫做支持向量网络。如下图所示:

由于最终的判别函数中实际只包含于支持向量的内积和求和,因此判别分类的计算复杂度取决于支持向量的个数。

不难发现,支持向量机作为统计学习理论中的经典代表使用了与传统方法完全不同的思路,即不是像传统方法那样首先试图将原输入空间降维(即特征选择和特征变换),而是设法将输入空间升维,以求在高维空间中问题变得线性可分或接近线性可分。因为升维知识改变了内积运算,并没有使得算法的复杂性随着维数的增加而增加,而且在高维空间中的推广能力并不受到维数的影响。

另外,需要说明的是,支持向量机采用不同的内积函数,将导致不同的支持向量机算法

目前得到研究的内积函数主要有以下三类:

(1)采用多项式形式的内积函数;

(2)采用核函数形式的内积函数;

(3)采用S形函数作为内积函数;

时间: 2024-10-18 05:22:08

opencv 支持向量机SVM分类器的相关文章

OpenCV支持向量机(SVM)介绍

支持向量机(SVM)介绍 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 CvSVM::train 训练一个SVM分类器, 以及用 CvSVM::predict 测试训练结果. 什么是支持向量机(SVM)? 支持向量机 (SVM) 是一个类分类器,正式的定义是一个能够将不同类样本在样本空间分隔的超平面. 换句话说,给定一些标记(label)好的训练样本 (监督式学习), SVM算法输出一个最优化的分隔超平面. 如何来界定一个超平面是不是最优的呢? 考虑如下问题: 假设给定一些分属于两类

支持向量机 (SVM)分类器原理分析与基本应用

前言 支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥.其理论优美,发展相对完善,是非常受到推崇的算法. 本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO. 另外还将讲解将SVM扩展到非线性可分的数据集上的大致方法. 预备术语 1. 分割超平面:就是决策边界 2. 间隔:样本点到分割超平面的距离 3. 支持向量:离分割超平面距离最近的样本点 算法原理 在前一篇文章 - 逻辑回归中,讲到了通过拟合直线来进行分类. 而拟合的中心思路是求错误估计函数取得最小值,得到的拟合

opencv使用svm

作者 群号 C语言交流中心 240137450  微信 15013593099 OpenCV开发SVM算法是基于LibSVM软件包开发的,LibSVM是台湾大学林智仁(LinChih-Jen)等开发设计的一个简单.易于使用和快速有效的SVM模式识别与回归的软件包.用OpenCV使用SVM算法的大概流程是 1)设置训练样本集 需要两组数据,一组是数据的类别,一组是数据的向量信息. 2)设置SVM参数 利用CvSVMParams类实现类内的成员变量svm_type表示SVM类型: CvSVM::C_

Python图像处理(15):SVM分类器

快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 在opencv中支持SVM分类器,本文尝试在python中调用它. 和前面的贝叶斯分类器一样,SVM也遵循先训练再使用的方式,我们直接在贝叶斯分类器的测试代码上做简单修改,完成两类数据点的分类. 首先也是先创建训练用的数据,需要注意的是这里的train_label必须是整数类型,而不是float: # 训练的点数 train_pts = 30 # 创建测试的数据点,2类 # 以(-1.5, -1

支持向量机(SVM)

在机器学习领域,SVM是一个与学习算法关联的监督式学习模型,这些学习算法可以分析用来做分类和回归的数据.给定一个训练样本集,每个都被标记为两类中的一类,一个SVM训练算法构建一个模型,该模型能够将新的数据分到一个类中,使它成为一个非概率的二类线性分类器.一个SVM模型是样本点在空间的一种表示,(被映射)以至于在不同类别中的样本能够被一个最大的间隔分开.新的样本被映射到相同的空间中,被预测属于一个类别,基于样本点落在间隔的哪一边.除了线性分类的功能以外,SVM可以有效的表现出非线性分类的功能,通过

第八篇:支持向量机 (SVM)

前言 本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤. 分析总体流程 1. 载入并了解数据集:2. 对数据集进行训练并生成模型:3. 在此模型之上调用测试数据集进行分类测试:4. 查看分类结果:5. 进行各种参数的调试并重复2-4直至分类的结果让人满意为止. 参数调整策略 综合来说,主要有以下四个方面需要调整: 1. 选择合适的核函数:2. 调整误分点容忍度参数cost:3. 调整各核函数的参数:4. 调整各样本的权重. 其中,对于特

机器学习与数据挖掘-支持向量机(SVM)(一)

最近在看斯坦福大学的机器学习的公开课,学习了支持向量机,再结合网上各位大神的学习经验总结了自己的一些关于支持向量机知识. 一.什么是支持向量机(SVM)? 1.支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析.支持向量机属于一般化线性分类器,这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器. 2.支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个

opencv的svm学习_1

概述 本篇是对opencv的svm学习笔记,基于对opencv官方svm教程的修改和记录.opencv的svm教程如下: 官网原版:http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html#introductiontosvms 汉语翻译版:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/ml/introductio

【转载】支持向量机SVM(一)

支持向量机SVM(一) [转载请注明出处]http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了.最开始接触SVM是去年暑假的时候,老师要求交<统计学习理论>的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念.这次斯坦福提供的学习材料,让我重新学习了一些SVM知识.我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的.这份材料从前几节讲的