剑指OFFER之变态跳台阶(九度OJ1389)

题目描述:




一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。


输入:



输入可能包含多个测试样例,对于每个测试案例,

输入包括一个整数n(1<=n<=50)。


输出:



对应每个测试案例,

输出该青蛙跳上一个n级的台阶总共有多少种跳法。


样例输入:

6 

样例输出:

32 

解题思路:


  这道题目跟之前的跳台阶大同小异,只是跳台阶的阶数从1变到了n,也就是说,不再是跳一下或者跳两下的问题,而是跳n下的问题。那么解题的思路显然还得逆向分析,我们发现:

  每个最终台阶都可以一步跳上去,也可以从他的前一个台阶跳一下上去,也可以从他的前两个台阶跳两个台阶上去。那么总结发现:

  最后剩下的台阶数,加上之前的跳台阶的方法,即可。即:

  最后剩下零个台阶,暂且定为0,直接跳n个台阶上来,显然只有一种方法,我们每次循环首先自加1就行了。

  最后剩下1个台阶,那么共有(第n-1个台阶的方法数)种;

  最后剩下2个台阶,共有(第n-2个台阶的方法数)种;

  ....

  最后剩下n-1个台阶,只有一种方法。

  把上面的方法累加起来,既是跳到第n阶台阶的数目

代码:


#include <stdio.h>
long long int arr[51] = {0,1};
void createArr(void);
int main(void){
int n;
createArr();
while(scanf("%d",&n)!=EOF && n>=1 && n<=50){
printf("%lld\n",arr[n]);
}
return 0;
}
void createArr(void){
int i,j;
for(i=2;i<51;i++){
j=i-1;
arr[i]++;//直接跳跃到本身的
while(j){
arr[i] += arr[j];
j--;
}
}
}

剑指OFFER之变态跳台阶(九度OJ1389),布布扣,bubuko.com

时间: 2024-10-18 11:53:25

剑指OFFER之变态跳台阶(九度OJ1389)的相关文章

剑指offer:变态跳台阶

目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:变态跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 解题思路 这题的名字和题面都和跳台阶这题很相似,没看过的同学可以先看看. 很明显,这题最大的改变就是状态转移式由原来的f[n]=f[n-1]+f[n-2]变成了f[n]=1+f[1]+f[2]+...+f[n-1].这就意味着不能完全照搬斐波那契数列的思想进行解题.但这个状态转移式很明显也具有规律性,

[剑指Offer]2.变态跳台阶

题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1: 当n = 1 时. 仅仅有一种跳法,即1阶跳,即Fib(1) = 1; 当n = 2 时. 有两种跳的方式,一阶跳和二阶跳,即Fib(2) = Fib(1) + Fib(0) = 2; 当n = 3 时.有三种跳的方式,第一次跳出一阶台阶后,后面还有Fib(3-1)中跳法,第一次跳出二阶台阶后.

剑指offer 9.变态跳台阶

9.变态跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路 与上题相似,假设要到3级,那么可以从0,1,2级直接到三级,那么f3=f1+f2+1,f2=f1+1,f3=4,找规律. 也可以换一种思路,不限制长度,那就是每一级都可以跳,只有选择跳和不跳,那么就是2^(n-1),结果一样. 代码 public static int JumpFloor(int target) { if (target <= 0) { re

【剑指Offer】变态跳台阶

问题描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级. 求该青蛙跳上一个n级的台阶总共有多少种跳法. 解题思路: 每一次调用函数都是查找这个楼梯数有多少种跳法,如果楼梯数已为0, 则表明只有这一种跳法,也就是没有下一步的跳法了: 若不为0,则设这一步会跳1.2.3~n阶,然后将跳完这一步的 下一步跳法的跳法相加,返回结果. 示例: n=4 1 1 1 1 1 1 2 1 2 1 1 3 2 1 1 2 2 3 1 4 代码实现 class Solution { publi

剑指offer 09变态跳台阶

一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public static void main(String[] args){ long startTime=System.currentTimeMillis(); System.out.println("第4项的结果是:"+JumpFloorII(4)); long endTime=System.current

剑指OFFER之丑数(九度OJ1214)

题目描述: 把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7.习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N个丑数. 输入: 输入包括一个整数N(1<=N<=1500). 输出: 可能有多组测试数据,对于每组数据,输出第N个丑数. 样例输入: 3 样例输出: 3 解题思路: 最简单的思路是,从1到大数,每个数都检测一遍是否是丑数,检测方法可以考虑 int ugly(int number){ if(number%2 == 0

剑指OFFER之反转链表(九度OJ1518)

题目描述: 输入一个链表,反转链表后,输出链表的所有元素.(hint : 请务必使用链表) 输入: 输入可能包含多个测试样例,输入以EOF结束.对于每个测试案例,输入的第一行为一个整数n(0<=n<=1000):代表将要输入的链表的个数.输入的第二行包含n个整数t(0<=t<=1000000):代表链表元素. 输出: 对应每个测试案例,以此输出链表反转后的元素,如没有元素则输出NULL. 样例输入: 5 1 2 3 4 5 0 样例输出: 5 4 3 2 1 NULL 解题思路:

剑指OFFER之矩形覆盖(九度OJ1390)

题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n<=70),其中n为偶数. 输出: 对应每个测试案例, 输出用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有的方法数. 样例输入: 4 样例输出: 5 解题思路: 观察题目中的矩形,2*n的,是个长条形.本来脑中想象的是复杂的华容道,但是既然只是简单的长条形,那么

剑指OFFER之重建二叉树(九度OJ1385)

题目描述: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并输出它的后序遍历序列. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入的第一行为一个整数n(1<=n<=1000):代表二叉树的节点个数. 输入的第二行包括n个整数(其中每个元素a的范围为(1<=a<=1000)):代表二叉树的前序