2016/10/23 这篇文章和那篇三维重建的流水账一样,用来记录一些关键资料来源和发牢骚. Python怎么学上手快,够用? 神经网络怎么上手? 强化学习怎么上手? 目标驱动,先去看用Python写的强化学习的代码,再去看一些实现各种神经网络的Python代码.再看两种融合的代码. 熟悉工作环境和工作所用工具,比如Tensorflow之类的.
一.任务与奖赏 我们执行某个操作a时,仅能得到一个当前的反馈r(可以假设服从某种分布),这个过程抽象出来就是“强化学习”. 强化学习任务通常用马尔可夫决策过程MDP来描述: 强化学习任务的四要素 E = <X, A, P, R> E:机器处于的环境 X:状态空间 A:动作空间 P:状态转移概率 R:奖赏函数 学习目的: “策略”:机器要做的是不断尝试学得一个“策略” π,根据状态x就能得到要执行的动作 a = π(x) 策略的评价: 长期累积奖赏,常用的有“T步累积奖赏” 强化学习与监督学习的
最近因为某个不可描述的原因需要迅速用强化学习完成一个小实例,但是之前完全不懂强化学习啊,虽然用了人家的代码但是在找代码的过程中还是发现了很多不错的强化学习资源,决定mark下来以后学习用 [1]如何用简单例子讲解 Q - learning 的具体过程? https://www.zhihu.com/question/26408259 [2]最简单的讲解Q-Learning过程的例子 http://mnemstudio.org/path-finding-q-learning-tutorial.htm
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他
来源:http://wanghaitao8118.blog.163.com/blog/static/13986977220153811210319/ Google的Deep Mind团队2013年在NIPS上发表了一篇牛x闪闪的文章,亮瞎了好多人眼睛,不幸的是我也在其中.前一段时间收集了好多关于这方面的资料,一直躺在收藏夹中,目前正在做一些相关的工作(希望有小伙伴一起交流). 一.相关文章 关于DRL,这方面的工作基本应该是随着深度学习的爆红最近才兴起的,做这方面的研究的一般都是人工智能领域的大
非监督式学习: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzQ3NjQ2NA==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" > 在此学习方式下.输入数据部分被标识,部分没有被标识,这样的学习模型能够用来进行预測,可是模型首先须要学习数据的内在结构以便合理的组织数据来进行预測.应用场景包含分类和回归,算法包含一些对经常使用监督
第一阶段 C语言加强以及C++语言详解(29天) 课程名称 课程内容 学习目标 C语言强化 · C语言基础复习(数据类型.变量.内存布局.指针基础) · C语言基础强化提高(C语言中的字符串.一维数组.二维数组) · C语言基础强化提高(一级指针,二级指针,三级指针实战,N级指针概念,指针数组和数组指针) · C语言基础强化提高(结构体.文件的使用) · 动态库的封装和设计 · 函数指针回调函数 · C语言面试题强化与提高 在基础班C语言知识点之上,掌握C语言深入技巧,为日后 做更大的项目打下坚
Reinforcement learning 是机器学习里面的一个分支,特别善於控制一只能够在某个环境下 自主行动 的个体 (autonomous agent),透过和 环境 之间的互动,例如 sensory perception 和 rewards,而不断改进它的 行为 . 听到强化学习,你脑里应该浮现一只曱甴那样的小昆虫,那就是 autonomous agent 的形象: 对「环境」(environment) 这概念,你应该想到像以下这经典游戏的迷宫: 包括有追捕你的怪物.和吃了会加分的食物
项目介绍 这是优达学院机器学习课程的第4个实习项目,需要训练智能出租车学习交通规则,然后安全可靠地到达目的地.项目通过循序渐进的方式展开,从熟悉基本的领域知识开始,再以随机动作来直观感受智能车的状态,也是在这一步,让初学者有了心潮澎湃的感觉,"车终于动了!",是的,从0开始一路走来,以游戏闯关的方式,终于来到了4级,第一次体验了传说中的"智能"了,也许是"眼见为实"吧,小车在自己算法的控制之下行动,是一种很美好的感受.然后项目通过引导,让大家开始
论文: https://einstein.ai/static/images/layouts/research/seq2sql/seq2sql.pdf 数据集:https://github.com/salesforce/WikiSQL Seq2SQL属于natural language interface (NLI)的领域,方便普通用户接入并查询数据库中的内容,即用户不需要了解SQL语句,只需要通过自然语言,就可查询所需内容. Seq2SQL借鉴的是Seq2Seq的思想,与Seq2Seq应用于机器