HDU 4720

http://acm.hdu.edu.cn/showproblem.php?pid=4720

包含三个点且最小的圆可能是三角形的外接圆或者是以任意两点连成线段的中点为圆心的园,找出最小的即可,然后判断麻瓜到圆心的距离和圆半径之间的关系,注意求外心的前提是三点不共线

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std ;
const double eps = 1e-8;
const double PI = acos(-1.0);
int sgn(double x)
{
if(fabs(x) < eps)return 0;
if(x < 0)return -1;
else return 1;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
void transXY(double B)
{
double tx = x,ty = y;
x = tx*cos(B) - ty*sin(B);
y = tx*sin(B) + ty*cos(B);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
//两直线相交求交点
//第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
//只有第一个值为2时,交点才有意义
pair<int,Point> operator &(const Line &b)const
{
Point res = s;
if(sgn((s-e)^(b.s-b.e)) == 0)
{
if(sgn((s-b.e)^(b.s-b.e)) == 0)
return make_pair(0,res);//重合
else return make_pair(1,res);//平行
}
double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
res.x += (e.x-s.x)*t;
res.y += (e.y-s.y)*t;
return make_pair(2,res);
}
};
//*两点间距离
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
//*判断三点共线
bool online(Point p1, Point p2, Point p3)
{
return
sgn(p3.x-min(p1.x,p2.x)) >= 0 &&
sgn(p3.x-max(p1.x,p2.x)) <= 0 &&
sgn(p3.y-min(p1.y,p2.y)) >= 0 &&
sgn(p3.y-max(p1.y,p2.y)) <= 0;
}
//*判断线段相交
bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0 &&
sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= 0;
}
//判断直线和线段相交
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= 0;
}
//点到直线距离
//返回为result,是点到直线最近的点
Point PointToLine(Point P,Line L)
{
Point result;
double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
result.x = L.s.x + (L.e.x-L.s.x)*t;
result.y = L.s.y + (L.e.y-L.s.y)*t;
return result;
}
//点到线段的距离
//返回点到线段最近的点
Point NearestPointToLineSeg(Point P,Line L)
{
Point result;
double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
if(t >= 0 && t <= 1)
{
result.x = L.s.x + (L.e.x - L.s.x)*t;
result.y = L.s.y + (L.e.y - L.s.y)*t;
}
else
{
if(dist(P,L.s) < dist(P,L.e))
result = L.s;
else result = L.e;
}
return result;
}
//计算多边形面积
//点的编号从0~n-1
double CalcArea(Point p[],int n)
{
double res = 0;
for(int i = 0;i < n;i++)
res += (p[i]^p[(i+1)%n])/2;
return fabs(res);
}
//*判断点在线段上
bool OnSeg(Point P,Line L)
{
return
sgn((L.s-P)^(L.e-P)) == 0 &&
sgn((P.x - L.s.x) * (P.x - L.e.x)) <= 0 &&
sgn((P.y - L.s.y) * (P.y - L.e.y)) <= 0;
}
//*判断点在凸多边形内
//点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0)
//点的编号:0~n-1
//返回值:
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inConvexPoly(Point a,Point p[],int n)
{
for(int i = 0;i < n;i++)
{
if(sgn((p[i]-a)^(p[(i+1)%n]-a)) < 0)return -1;
else if(OnSeg(a,Line(p[i],p[(i+1)%n])))return 0;
}
return 1;
}
//*判断点在任意多边形内
//射线法,poly[]的顶点数要大于等于3,点的编号0~n-1
//返回值
//-1:点在凸多边形外
//0:点在凸多边形边界上
//1:点在凸多边形内
int inPoly(Point p,Point poly[],int n)
{
int cnt;
Line ray,side;
cnt = 0;
ray.s = p;
ray.e.y = p.y;
ray.e.x = -100000000000.0;//-INF,注意取值防止越界
for(int i = 0;i < n;i++)
{
side.s = poly[i];
side.e = poly[(i+1)%n];
if(OnSeg(p,side))return 0;
//如果平行轴则不考虑
if(sgn(side.s.y - side.e.y) == 0)
continue;
if(OnSeg(side.s,ray))
{
if(sgn(side.s.y - side.e.y) > 0)cnt++;
}
else if(OnSeg(side.e,ray))
{
if(sgn(side.e.y - side.s.y) > 0)cnt++;
}
else if(inter(ray,side))
cnt++;
}
if(cnt % 2 == 1)return 1;
else return -1;
}
//判断凸多边形
//允许共线边
//点可以是顺时针给出也可以是逆时针给出
//点的编号0~n-1
bool isconvex(Point poly[],int n)
{
bool s[3];
memset(s,false,sizeof(s));
for(int i = 0;i < n;i++)
{
s[sgn( (poly[(i+1)%n]-poly[i])^(poly[(i+2)%n]-poly[i]) )+1] = true;
if(s[0] && s[2])return false;
}
return true;
}
//过三点求圆心坐标
Point waixin(Point a,Point b,Point c)
{
double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1*a1 + b1*b1)/2;
double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2*a2 + b2*b2)/2;
double d = a1*b2 - a2*b1;
return Point(a.x + (c1*b2 - c2*b1)/d, a.y + (a1*c2 -a2*c1)/d);
}
int main()
{
int t ;
scanf("%d",&t) ;
for(int cas=1 ;cas<=t ;cas++)
{
Point p[5] ;
for(int i=0 ;i<4 ;i++)
scanf("%lf%lf",&p[i].x,&p[i].y) ;
Point o ;
double dis=1e20 ;
for(int i=0 ;i<3 ;i++)
{
Point temp=Point((p[i].x+p[(i+1)%3].x)/2,(p[i].y+p[(i+1)%3].y)/2) ;
double r=max(dist(temp,p[0]),max(dist(temp,p[1]),dist(temp,p[2]))) ;
if(dis>r)
{
dis=r ;
o=temp ;
}
}
if(!online(p[0],p[1],p[2]))
{
Point temp=waixin(p[0],p[1],p[2]) ;
double r=max(dist(temp,p[0]),max(dist(temp,p[1]),dist(temp,p[2]))) ;
if(dis>r)
{
dis=r ;
o=temp ;
}
}
printf("Case #%d: ",cas) ;
if(sgn(dist(o,p[3])-dis)<=0)puts("Danger") ;
else puts("Safe") ;
}
return 0 ;
}

HDU 4720,布布扣,bubuko.com

时间: 2024-10-11 05:12:35

HDU 4720的相关文章

HDU 4720 :Naive and Silly Muggles

题目:HDU 4720 :Naive and Silly Muggles 题目大意:这题的意思是给出三个点, 然后在给出另一个点,问这个点会不会在覆盖前面三个点的最小的圆里面(包括边界), 在里面最输出danger, 如果任何情况下这个点都不在圆里面,那么就输出safe. 解题思路:三个点最小的覆盖的圆是三角形的外接圆,这样的圆面积一定是最小的. 但是相同面积的圆,所在的位置,覆盖的点会是不一样的.例如垂心关于三条边的对称点,以某个对称点为圆心的圆用之前的半径做圆,如果能够覆盖原来的三个点(点可

hdu 4720 Naive and Silly Muggles(几何)

题目链接:hdu 4720 Naive and Silly Muggles 题目大意:给出三点,找出一个圆,要求面积尽量小,并且三点必须在园内,如果可以找到一个圆,使得说第4个点不在圆内则是安全的. 解题思路:面积最小即三个点外切圆,根据三角形两条边的垂直平分线求出圆心.判断第4个点是否在圆内只要计算距离即可. 然后还要考虑说面积和外切圆相同,但是圆心不同的圆. #include <cstdio> #include <cstring> #include <cmath>

2013 成都邀请赛

今年又要打邀请赛了,前段时间做比赛都被虐的够呛.感觉不会再爱了...所以挂了下去年的成都邀请赛的题目.发现简单题还是能切上几道的,可是难题就无能为力了.. .阿门,还是水平差得远啊.. . (ps:近期感觉状态不佳.依靠了队友神勇的发挥. .. Current Time: 2014-05-15 08:43:24 Contest Type: Public Start Time: 2014-05-14 15:10:00 Contest Status: Ended End Time: 2014-05-

HDU 6203 ping ping ping [LCA,贪心,DFS序,BIT(树状数组)]

题目链接:[http://acm.hdu.edu.cn/showproblem.php?pid=6203] 题意 :给出一棵树,如果(a,b)路径上有坏点,那么(a,b)之间不联通,给出一些不联通的点对,然后判断最少有多少个坏点. 题解 :求每个点对的LCA,然后根据LCA的深度排序.从LCA最深的点对开始,如果a或者b点已经有点被标记了,那么continue,否者标记(a,b)LCA的子树每个顶点加1. #include<Bits/stdc++.h> using namespace std;

HDU 5542 The Battle of Chibi dp+树状数组

题目:http://acm.hdu.edu.cn/showproblem.php?pid=5542 题意:给你n个数,求其中上升子序列长度为m的个数 可以考虑用dp[i][j]表示以a[i]结尾的长度为j的上升子序列有多少 裸的dp是o(n2m) 所以需要优化 我们可以发现dp的第3维是找比它小的数,那么就可以用树状数组来找 这样就可以降低复杂度 #include<iostream> #include<cstdio> #include<cstring> #include

hdu 1207 汉诺塔II (DP+递推)

汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4529    Accepted Submission(s): 2231 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往

[hdu 2102]bfs+注意INF

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2102 感觉这个题非常水,结果一直WA,最后发现居然是0x3f3f3f3f不够大导致的--把INF改成INF+INF就过了. #include<bits/stdc++.h> using namespace std; bool vis[2][15][15]; char s[2][15][15]; const int INF=0x3f3f3f3f; const int fx[]={0,0,1,-1};

HDU 3555 Bomb (数位DP)

数位dp,主要用来解决统计满足某类特殊关系或有某些特点的区间内的数的个数,它是按位来进行计数统计的,可以保存子状态,速度较快.数位dp做多了后,套路基本上都差不多,关键把要保存的状态给抽象出来,保存下来. 简介: 顾名思义,所谓的数位DP就是按照数字的个,十,百,千--位数进行的DP.数位DP的题目有着非常明显的性质: 询问[l,r]的区间内,有多少的数字满足某个性质 做法根据前缀和的思想,求出[0,l-1]和[0,r]中满足性质的数的个数,然后相减即可. 算法核心: 关于数位DP,貌似写法还是

HDU 5917 Instability ramsey定理

http://acm.hdu.edu.cn/showproblem.php?pid=5917 即世界上任意6个人中,总有3个人相互认识,或互相皆不认识. 所以子集 >= 6的一定是合法的. 然后总的子集数目是2^n,减去不合法的,暴力枚举即可. 选了1个肯定不合法,2个也是,3个的话C(n, 3)枚举判断,C(n, 4), C(n, 5) #include <bits/stdc++.h> #define IOS ios::sync_with_stdio(false) using name