概率图模型课本笔记(五)

概率图模型课本笔记(五)的相关文章

概率图模型课本笔记(二)

无向图模型: We have now presented three sets of independence assertions associated with a network structure H. For general distributions, Ip(H) is strictly weaker than Il(H), which in turn is strictly weaker than I(H). However, all three definitions are e

概率图模型学习笔记(二)贝叶斯网络-语义学与因子分解

概率分布(Distributions) 如图1所示,这是最简单的联合分布案例,姑且称之为学生模型. 图1 其中包含3个变量,分别是:I(学生智力,有0和1两个状态).D(试卷难度,有0和1两个状态).G(成绩等级,有1.2.3三个状态). 表中就是概率的联合分布了,表中随便去掉所有包含某个值的行,就能对分布表进行缩减. 例如可以去掉所有G不为1的行,这样就只剩下了1.4.7.10行,这样他们的概率之和就不为1了,所以可以重新标准化(Renormalization).如图2所示. 图2 反之也可以

概率图模型(PGM)学习笔记(四)-贝叶斯网络-伯努利贝叶斯-多项式贝叶斯

指针悬空 指针悬空在我们使用指针的时候很容易被忽视,主要的表现是:指针所指向的内存 释放,指针并没有置为NULL,致使一个不可控制的指针. #include<stdio.h> #include<stdlib.h> int *pointer; void func() { int n=8; pointer=&n; printf("pointer point data is %d\n",*pointer); // pointer=NULL; } int mai

概率图模型(PGM)学习笔记(三)模式推断与概率图流

我们依然使用"学生网络"作为例子,如图1. 图1 首先给出因果推断(Causal Reasoning)的直觉解释. 可以算出来 即学生获得好的推荐信的概率大约是0.5. 但如果我们知道了学生的智商比较低,那么拿到好推荐信的概率就下降了: 进一步,如果又同时知道了考试的难度很低,那么他拿到好的推荐信得概率又上升了,甚至还能超过最初的概率: 上述这个过程就是因果推断,你看它是顺着箭头的方向进行推断. 其次给出信度推断(Evidential Reasoning)的直觉解释.如图2. 图2 本

概率图模型(PGM)学习笔记(一)动机与概述

本文根据Daphne Koller的课程整理. PDM(ProbabilisticGraphiccal Models) 称为概率图模型.下面分别说明3个词对应的意义. 概率 -给出了不确定性的明确量度. -给出了根据不确定性进行推断的有力工具. -利用数据结构,建立了进行学习的方法,解决十分大规模的问题. 图 这里主要用到2种概率图,用于表示依赖关系.如图1所示. 图1 1.Bayesiannetworks 贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DAG). 由

概率图模型基础

一.概念引入 很多事情是具有不确定性的.人们往往希望从不确定的东西里尽可能多的得到确定的知识.信息.为了达到这一目的,人们创建了概率理论来描述事物的不确定性.在这一基础上,人们希望能够通过已经知道的知识来推测出未知的事情,无论是现在.过去.还是将来.在这一过程中,模型往往是必须的,什么样的模型才是相对正确的?这又是我们需要解决的问题.这些问题出现在很多领域,包括模式识别.差错控制编码等. 概率图模型是解决这些问题的工具之一.从名字上可以看出,这是一种或是一类模型,同时运用了概率和图这两种数学工具

《Java并发编程实战》第十六章 Java内存模型 读书笔记

Java内存模型是保障多线程安全的根基,这里仅仅是认识型的理解总结并未深入研究. 一.什么是内存模型,为什么需要它 Java内存模型(Java Memory Model)并发相关的安全发布,同步策略的规范.一致性等都来自于JMM. 1 平台的内存模型 在架构定义的内存模型中将告诉应用程序可以从内存系统中获得怎样的保证,此外还定义了一些特殊的指令(称为内存栅栏或栅栏),当需要共享数据时,这些指令就能实现额外的存储协调保证. JVM通过在适当的位置上插入内存栅栏来屏蔽在JVM与底层平台内存模型之间的

NLTK学习笔记(五):分类和标注词汇

[TOC] 词性标注器 之后的很多工作都需要标注完的词汇.nltk自带英文标注器pos_tag import nltk text = nltk.word_tokenize("And now for something compleyely difference") print(text) print(nltk.pos_tag(text)) 标注语料库 表示已经标注的标识符:nltk.tag.str2tuple('word/类型') text = "The/AT grand/J

概率图模型

概率图模型 一.马尔科夫链特性 在已知系统当前状态的条件下,他未来的演变不依赖于过去的演变.第T+1次的结果只受第T次结果的影响,即只与当前状态有关,而与系统的初始状态和此次转移前的所有状态无关.(无后效性) 马尔科夫的一步转移概率可以定义为: Pij(n) = P{Xn+1=j|Xn=i} 一步转移矩阵定义:转移概率Pij所组成的矩阵. 马尔科夫链的发现反映了诸多系统的普遍规律,例如在编码领域,我们熟悉的LZMA(文件名为.7z)数据压缩算法就使用了马尔科夫链:在生物世界中,生物种群的数量变化