1162. Sudoku
Constraints
Time Limit: 1 secs, Memory Limit: 32 MB , Special Judge
Description
Sudoku is a very simple task. A square table with 9 rows and 9 columns is divided to 9 smaller squares 3x3 as shown on the Figure. In some of the cells are written decimal digits from 1 to 9. The other cells are empty. The goal is to fill the empty cells with
decimal digits from 1 to 9, one digit per cell, in such way that in each row, in each column and in each marked 3x3 subsquare, all the digits from 1 to 9 to appear. Write a program to solve a given Sudoku-task.
Input
The input data will start with the number of the test cases. For each test case, 9 lines follow, corresponding to the rows of the table. On each line a string of exactly 9 decimal digits is given, corresponding to the cells in this line. If a cell is empty
it is represented by 0.
Output
For each test case your program should print the solution in the same format as the input data. The empty cells have to be filled according to the rules. If solutions is not unique, then the program may print any one of them.
Sample Input
1 103000509 002109400 000704000 300502006 060000050 700803004 000401000 009205800 804000107
Sample Output
143628579 572139468 986754231 391542786 468917352 725863914 237481695 619275843 854396127
#include <iostream> #include <vector> #include <string.h> #include <cstring> #include <stdio.h> #include <algorithm> using namespace std; //数独题,深搜,这是剪枝的 char ans[10][10];//用来储存最终答案 bool num_in_row[10][10], num_in_col[10][10], num_in_blo[10][10];//这里的数组[i][j]表示在第i行/列/块里面已经有了j这个数字(有的时候为true) bool is_ok;//是否找到了答案 int blank_num;//空白的数目 struct Blank { int pos_row, pos_col, pos_blo, possibility;//其中的possibility就是表示可能的数字的个数 }blank[85]; int find_block(int x, int y) {//返回属于的块编号 int block[10][10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 0, 4, 4, 4, 5, 5, 5, 6, 6, 6, 0, 4, 4, 4, 5, 5, 5, 6, 6, 6, 0, 4, 4, 4, 5, 5, 5, 6, 6, 6, 0, 7, 7, 7, 8, 8, 8, 9, 9, 9, 0, 7, 7, 7, 8, 8, 8, 9, 9, 9, 0, 7, 7, 7, 8, 8, 8, 9, 9, 9 }; return block[x][y]; } void dfs(int blank_now) {//blank_now指当前要填的空的编号 if (is_ok == true)//找到答案了就返回 return; if (blank_now == blank_num) {//如果blank_now超过了总的空白数,也就是说空白都填完了那就返回 is_ok = true; return; } for (int possible = 1; possible <= 9; possible++) {//在一个空上有9种可能 if (!num_in_row[blank[blank_now].pos_row][possible] && !num_in_col[blank[blank_now].pos_col][possible] && !num_in_blo[blank[blank_now].pos_blo][possible]) { ans[blank[blank_now].pos_row][blank[blank_now].pos_col] = possible + '0';//先填入答案中,就算不对,后来填的也可以覆盖 num_in_row[blank[blank_now].pos_row][possible] = true;//并更新这个空白的限制信息 num_in_col[blank[blank_now].pos_col][possible] = true; num_in_blo[blank[blank_now].pos_blo][possible] = true; dfs(blank_now + 1);//深搜 if (is_ok)//找到答案直接返回完事 return; num_in_row[blank[blank_now].pos_row][possible] = false;//程序运行到这说明前面的假设没找到答案,因此还原这个空白的限制信息 num_in_col[blank[blank_now].pos_col][possible] = false; num_in_blo[blank[blank_now].pos_blo][possible] = false; } } } void set_blank(int k, int i, int j) { blank[k].possibility = 0; blank[k].pos_row = i; blank[k].pos_col = j; blank[k].pos_blo = find_block(i, j); } void calculate(int k) {//这里是计算可能的数的个数 for (int temp = 1; temp <= 9; temp++) { if (!num_in_row[blank[k].pos_row][temp] && !num_in_col[blank[k].pos_col][temp] && !num_in_blo[blank[k].pos_blo][temp]) { blank[k].possibility++; } } } bool cmp(const Blank &a, const Blank &b) {//按照从小到大的顺序排序 return a.possibility < b.possibility; } int main() { int case_num, i, j; scanf("%d", &case_num); while (case_num--) { blank_num = 0; is_ok = false; memset(num_in_row, false, sizeof(num_in_row)); memset(num_in_col, false, sizeof(num_in_col)); memset(num_in_blo, false, sizeof(num_in_blo)); for (i = 1; i <= 9; i++) { scanf("%s", ans[i] + 1); } for (i = 1; i <= 9; i++) { for (j = 1; j <= 9; j++) { if (ans[i][j] != '0') {//不是空白就更新限制信息 num_in_row[i][ans[i][j] - '0'] = true;//更新限制信息 num_in_col[j][ans[i][j] - '0'] = true; num_in_blo[find_block(i, j)][ans[i][j] - '0'] = true; } else { set_blank(blank_num, i, j); blank_num++; } } } for (i = 0; i < blank_num; i++) {//计算possibility calculate(i); } sort(blank, blank + blank_num, cmp);//排序,也就是剪枝 dfs(0); for (i = 1; i <= 9; i++) { for (j = 1; j <= 9; j++) { printf("%c", ans[i][j]); } printf("\n"); } } return 0; }