五种IO模型:
异步IO主要应用于文件IO。在同步在编程里,一般是指只有在某个IO操作执行完后可以执行后面的操作。异步则是将某个操作给系统,主线程继续执行别的操作,而由内核完成操作后去负责通知主线程异步操作已经完成。
同步:指进程发出一个过程(功能、函数)调用后,在没有得到结果之前,该调用将不会返回。
异步:指进程发出一个过程(功能、函数)调用后,调用者不能立刻得到结果,但调用会返回。调用完成后,内核通过状态、通知和回调来通知调用者。
同步IO操作会导致请求进程阻塞,直到I/O操作完成;异步I/O操作不导致请求进程阻塞。
阻塞:阻塞调用是指调用结果返回之前,当前线程会被挂起(线程进入睡眠状态)。函数只有在得到结果之后才会返回。 忙等待,直到数据完成
非阻塞:指在不能立刻得到结果之前,被调用函数不会阻塞当前线程,而会立刻返回。 多次轮询 查询结果
AIO 简介
Linux 异步 I/O 是 Linux 内核中提供的一个相当新的增强。它是 2.6 版本内核的一个标准特性,但是我们在 2.4 版本内核的补丁中也可以找到它。AIO 背后的基本思想是允许进程发起很多 I/O 操作,而不用阻塞或等待任何操作完成。稍后或在接收到 I/O 操作完成的通知时,进程就可以检索 I/O 操作的结果。
I/O 模型
在深入介绍 AIO API 之前,让我们先来探索一下 Linux 上可以使用的不同 I/O 模型。这并不是一个详尽的介绍,但是我们将试图介绍最常用的一些模型来解释它们与异步 I/O 之间的区别。图 1 给出了同步和异步模型,以及阻塞和非阻塞的模型。
图 1. 基本 Linux I/O 模型的简单矩阵
每个 I/O 模型都有自己的使用模式,它们对于特定的应用程序都有自己的优点。本节将简要对其一一进行介绍。
同步阻塞 I/O
I/O 密集型与 CPU 密集型进程的比较
I/O 密集型进程所执行的 I/O 操作比执行的处理操作更多。CPU 密集型的进程所执行的处理操作比 I/O 操作更多。Linux 2.6 的调度器实际上更加偏爱 I/O 密集型的进程,因为它们通常会发起一个 I/O 操作,然后进行阻塞,这就意味着其他工作都可以在两者之间有效地交错进行。
最常用的一个模型是同步阻塞 I/O 模型。在这个模型中,用户空间的应用程序执行一个系统调用,这会导致应用程序阻塞。这意味着应用程序会一直阻塞,直到系统调用完成为止(数据传输完成或发生错误)。调用应用程序处于一种不再消费 CPU 而只是简单等待响应的状态,因此从处理的角度来看,这是非常有效的。
图 2 给出了传统的阻塞 I/O 模型,这也是目前应用程序中最为常用的一种模型。其行为非常容易理解,其用法对于典型的应用程序来说都非常有效。在调用 read 系统调用时,应用程序会阻塞并对内核进行上下文切换。然后会触发读操作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。然后应用程序就会解除阻塞(read 调用返回)。
图 2. 同步阻塞 I/O 模型的典型流程
从应用程序的角度来说,read 调用会延续很长时间。实际上,在内核执行读操作和其他工作时,应用程序的确会被阻塞。
同步非阻塞 I/O
同步阻塞 I/O 的一种效率稍低的变种是同步非阻塞 I/O。在这种模型中,设备是以非阻塞的形式打开的。这意味着 I/O 操作不会立即完成,read操作可能会返回一个错误代码,说明这个命令不能立即满足(EAGAIN 或 EWOULDBLOCK),如图 3 所示。
图 3. 同步非阻塞 I/O 模型的典型流程
非阻塞的实现是 I/O 命令可能并不会立即满足,需要应用程序调用许多次来等待操作完成。这可能效率不高,因为在很多情况下,当内核执行这个命令时,应用程序必须要进行忙碌等待,直到数据可用为止,或者试图执行其他工作。正如图 3 所示的一样,这个方法可以引入 I/O 操作的延时,因为数据在内核中变为可用到用户调用 read 返回数据之间存在一定的间隔,这会导致整体数据吞吐量的降低。
异步阻塞 I/O
另外一个阻塞解决方案是带有阻塞通知的非阻塞 I/O。在这种模型中,配置的是非阻塞 I/O,然后使用阻塞 select 系统调用来确定一个 I/O 描述符何时有操作。使 select 调用非常有趣的是它可以用来为多个描述符提供通知,而不仅仅为一个描述符提供通知。对于每个提示符来说,我们可以请求这个描述符可以写数据、有读数据可用以及是否发生错误的通知。
图 4. 异步阻塞 I/O 模型的典型流程 (select)
select 调用的主要问题是它的效率不是非常高。尽管这是异步通知使用的一种方便模型,但是对于高性能的 I/O 操作来说不建议使用。
异步非阻塞 I/O(AIO)
最后,异步非阻塞 I/O 模型是一种处理与 I/O 重叠进行的模型。读请求会立即返回,说明 read 请求已经成功发起了。在后台完成读操作时,应用程序然后会执行其他处理操作。当 read 的响应到达时,就会产生一个信号或执行一个基于线程的回调函数来完成这次 I/O 处理过程。
图 5. 异步非阻塞 I/O 模型的典型流程
在一个进程中为了执行多个 I/O 请求而对计算操作和 I/O 处理进行重叠处理的能力利用了处理速度与 I/O 速度之间的差异。当一个或多个 I/O 请求挂起时,CPU 可以执行其他任务;或者更为常见的是,在发起其他 I/O 的同时对已经完成的 I/O 进行操作。
下一节将深入介绍这种模型,探索这种模型使用的 API,然后展示几个命令。
异步 I/O 的动机
从前面 I/O 模型的分类中,我们可以看出 AIO 的动机。这种阻塞模型需要在 I/O 操作开始时阻塞应用程序。这意味着不可能同时重叠进行处理和 I/O 操作。同步非阻塞模型允许处理和 I/O 操作重叠进行,但是这需要应用程序根据重现的规则来检查 I/O 操作的状态。这样就剩下异步非阻塞 I/O 了,它允许处理和 I/O 操作重叠进行,包括 I/O 操作完成的通知。
除了需要阻塞之外,select 函数所提供的功能(异步阻塞 I/O)与 AIO 类似。不过,它是对通知事件进行阻塞,而不是对 I/O 调用进行阻塞。
Linux 上的 AIO 简介
本节将探索 Linux 的异步 I/O 模型,从而帮助我们理解如何在应用程序中使用这种技术。
在传统的 I/O 模型中,有一个使用惟一句柄标识的 I/O 通道。在 UNIX 中,这些句柄是文件描述符(这对等同于文件、管道、套接字等等)。在阻塞 I/O 中,我们发起了一次传输操作,当传输操作完成或发生错误时,系统调用就会返回。
Linux 上的 AIO
AIO 在 2.5 版本的内核中首次出现,现在已经是 2.6 版本的产品内核的一个标准特性了。
在异步非阻塞 I/O 中,我们可以同时发起多个传输操作。这需要每个传输操作都有惟一的上下文,这样我们才能在它们完成时区分到底是哪个传输操作完成了。在 AIO 中,这是一个aiocb(AIO I/O Control Block)结构。这个结构包含了有关传输的所有信息,包括为数据准备的用户缓冲区。在产生 I/O (称为完成)通知时,aiocb 结构就被用来惟一标识所完成的 I/O 操作。这个 API 的展示显示了如何使用它。
AIO API
AIO 接口的 API 非常简单,但是它为数据传输提供了必需的功能,并给出了两个不同的通知模型。表 1 给出了 AIO 的接口函数,本节稍后会更详细进行介绍。
表 1. AIO 接口 API
API 函数 说明
aio_read 请求异步读操作
aio_error 检查异步请求的状态
aio_return 获得完成的异步请求的返回状态
aio_write 请求异步写操作
aio_suspend 挂起调用进程,直到一个或多个异步请求已经完成(或失败)
aio_cancel 取消异步 I/O 请求
lio_listio 发起一系列 I/O 操作