ubi使用(转)

1. ubifs号称性能比yaffs2 好,同时压缩可读写,文件系统image体较小同时可写,相当不错

2. ubifs制作

(1) mkfs.ubifs

mkfs.ubifs -r system -m 2048 -e 126976 -c 1057 -x zlib -o system.ubifs

-r说的目录

-m说的是nand flash的页大小,一般都是2048或者4096,当然也有些是512,硬件特性决定好了,或者说驱动规定好了,有些平台4096页当做2048用也是用的

-e说的是逻辑擦除块大小,大家知道nand flash页读页写块擦,一个设备多个块,一个块多个页,一般也都是一个块是64个页,这样算一下无论擦除块大小就是2048*64=131072,-e的算法是物理擦除块大小-2*页大小,这里就是131072-2*2048=126976

-c说的是最大逻辑块编号,这个很重要,不能大也不能小,太小也要大于image大小,太大mount有问题,计算起点是分区的物理块数量,比如128MiB的mtd分区,物理块数量是128MiB/2048/64 = 1024个,需要减去2个坏块保留块,减去1个wear-leveling块,还要减去1个eba的块,等等,比如最终的值是1022,注意,如果物理上这个分区有坏块的话,kernel会扫描到的,这时候,我们计算的这个值就要减去坏块数了,否则会有逻辑块大于物理块数的内核问题mount失败,确切知道坏块数是比较困难的,一般做法是做一个坏块容忍数,比如20个,这样我们再减去20个坏块,不要担心这个会浪费空间,ubinize的autoresize选项就是解决这个问题的。具体的这个值需要计算。!!!!

-o说的image名字

-x说的是压缩方法,默认是lzo,还支持zlib,zlib压缩率高些,但是lzo压缩解压速度快

(2)  ubinize

ubinize -o system.ubi -m 2048 -p 131072 ubinize.cfg

-o说的是输出image

-m还是页大小

-p是物理擦除块大小

ubinize.cfg是volume配置文件,例子如下:

  1. [ubifs]
  2. mode=ubi
  3. image=system.ubifs #说的是mkfs.ubifs的结果
  4. vol_id=0
  5. vol_size=100MiB #说的是volume大小,用-e和-c的值做乘法计算,一般不用写,autoresize会自动根据mtd分区大小适应,默认值是image大小,写了这个作用是帮助检查image是否超过了分区限制,制作时候就提示,否则mount会出错。-c的值是经过计算的最大值了,不过autoresize参数会自适应大小,不会浪费空间的。
  6. vol_type=dynamic
  7. vol_alignment=1
  8. vol_name=system #说的是分区名字
  9. vol_flags=autoresize

(4) uboot支持

-0-  需要打开的配置 - 需要烧写mkfs.ubifs结果时候需要打开,ubinize处理过的不需要

CONFIG_CMD_UBI

CONFIG_CMD_UBIFS

CONFIG_LZO

CONFIG_RBTREE

CONFIG_ZLIB

CONFIG_GZIP

-1- ubifs烧写

mkfs.ubifs工具制作的结果,就是ubifs镜像,不包含volume信息,需要用

nand erase.part system

ubi part system - 激活分区

ubi create system - 创建分区

ubi write 84000000 system xxxxx - xxxxx表示镜像实际大小

-2- ubi volume bin烧写

mkfs.ubifs后,使用ubinize处理了ubifs的镜像后,镜像含有了volume信息,直接

nand write 84000000 system xxxxx - xxxxx表示镜像实际大小

(5) kernel支持

  • Device Drivers --->
  • Memory Technology Device(MTD) support --->
  • UBI - Unsorted block images --->
  • <*> Enable UBI - Unsorted block images
  • File systems --->
  • Miscellaneous filesystems --->
  • <*> UBIFS file system support
  • [*] Advanced compression options
  • [*] LZO compression support
  • [*] ZLIB compression support

(6) android支持

-1- andriod/system/core/rootdir/init.rc

mount yaffs2 [email protected] /data nosuid nodev

改为:

mount ubifs [email protected] /data nosuid nodev

-2- 增加对ubifs的mount支持

  • andriod/system/core/init/builtins.c
  • 在 } else if (!strncmp(source, "[email protected]", 5)) {
  • 之前加上
  • + }else if (!strncmp(source, "[email protected]", 4)) {
  • + n = ubi_attach_mtd(source + 4);
  • + if (n < 0) {
  • + return -1;
  • + }
  • + sprintf(tmp, "/dev/ubi%d_0", n);
  • + if (wait)
  • + wait_for_file(tmp, COMMAND_RETRY_TIMEOUT);
  • + if (mount(tmp, target, system, flags, options) < 0) {
  • + ubi_detach_dev(n);
  • + return -1;
  • + }
  • + return 0;
  • + }else if (!strncmp(source, "[email protected]", 5)) {
  • 3. andriod/system/core/init/init.c
  • 在static int property_triggers_enabled = 0;之后加上
  • +static unsigned ubifs_enabled = 1;
  • static int set_init_properties_action(int nargs, char **args)
  • {
  • property_set("ro.revision", tmp);
  • + property_set("ro.ubifs",ubifs_enabled ? "1" : "0");
  • return 0;
  • }
  • int main(int argc, char **argv)
  • {
  • action_for_each_trigger("post-fs", action_add_queue_tail);
  • + action_for_each_trigger("ubi-fs", action_add_queue_tail);
  • }
  • 4. andriod/system/core/init/util.h
  • void get_hardware_name(char *hardware, unsigned int *revision);
  • +int ubi_attach_mtd(const char *name);
  • +int ubi_detach_dev(int dev);
  • 5. andriod/system/core/init/util.c
  • #include <sys/un.h>
  • +#include <sys/ioctl.h>
  • #include "util.h"
  • +#include "ubi-user.h"
  • +#define UBI_CTRL_DEV "/dev/ubi_ctrl"
  • +#define UBI_SYS_PATH "/sys/class/ubi"
  • 在最后添加下面三个函数
  • static int ubi_dev_read_int(int dev, const char *file, int def)
  • {
  • int fd, val = def;
  • char path[128], buf[64];
  • sprintf(path, UBI_SYS_PATH "/ubi%d/%s", dev, file);
  • wait_for_file(path, 5);
  • fd = open(path, O_RDONLY);
  • if (fd == -1) {
  • return val;
  • }
  • if (read(fd, buf, 64) > 0) {
  • val = atoi(buf);
  • }
  • close(fd);
  • return val;
  • }
  • int ubi_attach_mtd(const char *name)
  • {
  • int ret;
  • int mtd_num, ubi_num;
  • int ubi_ctrl, ubi_dev;
  • int vols, avail_lebs, leb_size;
  • char path[128];
  • struct ubi_attach_req attach_req;
  • struct ubi_mkvol_req mkvol_req;
  • mtd_num = mtd_name_to_number(name);
  • if (mtd_num == -1) {
  • return -1;
  • }
  • ubi_ctrl = open(UBI_CTRL_DEV, O_RDONLY);
  • if (ubi_ctrl == -1) {
  • return -1;
  • }
  • memset(&attach_req, 0, sizeof(struct ubi_attach_req));
  • attach_req.ubi_num = UBI_DEV_NUM_AUTO;
  • attach_req.mtd_num = mtd_num;
  • ret = ioctl(ubi_ctrl, UBI_IOCATT, &attach_req);
  • if (ret == -1) {
  • close(ubi_ctrl);
  • return -1;
  • }
  • ubi_num = attach_req.ubi_num;
  • vols = ubi_dev_read_int(ubi_num, "volumes_count", -1);
  • if (vols == 0) {
  • sprintf(path, "/dev/ubi%d", ubi_num);
  • ubi_dev = open(path, O_RDONLY);
  • if (ubi_dev == -1) {
  • close(ubi_ctrl);
  • return ubi_num;
  • }
  • avail_lebs = ubi_dev_read_int(ubi_num, "avail_eraseblocks", 0);
  • leb_size = ubi_dev_read_int(ubi_num, "eraseblock_size", 0);
  • memset(&mkvol_req, 0, sizeof(struct ubi_mkvol_req));
  • mkvol_req.vol_id = UBI_VOL_NUM_AUTO;
  • mkvol_req.alignment = 1;
  • mkvol_req.bytes = (long long)avail_lebs * leb_size;
  • mkvol_req.vol_type = UBI_DYNAMIC_VOLUME;
  • ret = snprintf(mkvol_req.name, UBI_MAX_VOLUME_NAME + 1, "%s", name);
  • mkvol_req.name_len = ret;
  • ioctl(ubi_dev, UBI_IOCMKVOL, &mkvol_req);
  • close(ubi_dev);
  • }
  • close(ubi_ctrl);
  • return ubi_num;
  • }
  • int ubi_detach_dev(int dev)
  • {
  • int ret, ubi_ctrl;
  • ubi_ctrl = open(UBI_CTRL_DEV, O_RDONLY);
  • if (ubi_ctrl == -1) {
  • return -1;
  • }
  • ret = ioctl(ubi_ctrl, UBI_IOCDET, &dev);
  • close(ubi_ctrl);
  • return ret;
  • }
  • 6.增加文件
  • andriod/system/core/init/ubi-user.h
  • /*
  • * Copyright (c) International Business Machines Corp., 2006
  • *
  • * This program is free software; you can redistribute it and/or modify
  • * it under the terms of the GNU General Public License as published by
  • * the Free Software Foundation; either version 2 of the License, or
  • * (at your option) any later version.
  • *
  • * This program is distributed in the hope that it will be useful,
  • * but WITHOUT ANY WARRANTY; without even the implied warranty of
  • * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  • * the GNU General Public License for more details.
  • *
  • * You should have received a copy of the GNU General Public License
  • * along with this program; if not, write to the Free Software
  • * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  • *
  • * Author: Artem Bityutskiy (Битюцкий Артём)
  • */
  • #ifndef __UBI_USER_H__
  • #define __UBI_USER_H__
  • /*
  • * UBI device creation (the same as MTD device attachment)
  • * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  • *
  • * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
  • * control device. The caller has to properly fill and pass
  • * &struct ubi_attach_req object - UBI will attach the MTD device specified in
  • * the request and return the newly created UBI device number as the ioctl
  • * return value.
  • *
  • * UBI device deletion (the same as MTD device detachment)
  • * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  • *
  • * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
  • * control device.
  • *
  • * UBI volume creation
  • * ~~~~~~~~~~~~~~~~~~~
  • *
  • * UBI volumes are created via the %UBI_IOCMKVOL IOCTL command of UBI character
  • * device. A &struct ubi_mkvol_req object has to be properly filled and a
  • * pointer to it has to be passed to the IOCTL.
  • *
  • * UBI volume deletion
  • * ~~~~~~~~~~~~~~~~~~~
  • *
  • * To delete a volume, the %UBI_IOCRMVOL IOCTL command of the UBI character
  • * device should be used. A pointer to the 32-bit volume ID hast to be passed
  • * to the IOCTL.
  • *
  • * UBI volume re-size
  • * ~~~~~~~~~~~~~~~~~~
  • *
  • * To re-size a volume, the %UBI_IOCRSVOL IOCTL command of the UBI character
  • * device should be used. A &struct ubi_rsvol_req object has to be properly
  • * filled and a pointer to it has to be passed to the IOCTL.
  • *
  • * UBI volume update
  • * ~~~~~~~~~~~~~~~~~
  • *
  • * Volume update should be done via the %UBI_IOCVOLUP IOCTL command of the
  • * corresponding UBI volume character device. A pointer to a 64-bit update
  • * size should be passed to the IOCTL. After this, UBI expects user to write
  • * this number of bytes to the volume character device. The update is finished
  • * when the claimed number of bytes is passed. So, the volume update sequence
  • * is something like:
  • *
  • * fd = open("/dev/my_volume");
  • * ioctl(fd, UBI_IOCVOLUP, &image_size);
  • * write(fd, buf, image_size);
  • * close(fd);
  • *
  • * Atomic eraseblock change
  • * ~~~~~~~~~~~~~~~~~~~~~~~~
  • *
  • * Atomic eraseblock change operation is done via the %UBI_IOCEBCH IOCTL
  • * command of the corresponding UBI volume character device. A pointer to
  • * &struct ubi_leb_change_req has to be passed to the IOCTL. Then the user is
  • * expected to write the requested amount of bytes. This is similar to the
  • * "volume update" IOCTL.
  • */
  • /*
  • * When a new UBI volume or UBI device is created, users may either specify the
  • * volume/device number they want to create or to let UBI automatically assign
  • * the number using these constants.
  • */
  • #define UBI_VOL_NUM_AUTO (-1)
  • #define UBI_DEV_NUM_AUTO (-1)
  • /* Maximum volume name length */
  • #define UBI_MAX_VOLUME_NAME 127
  • /* IOCTL commands of UBI character devices */
  • #define UBI_IOC_MAGIC ‘o‘
  • /* Create an UBI volume */
  • #define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
  • /* Remove an UBI volume */
  • #define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, int32_t)
  • /* Re-size an UBI volume */
  • #define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
  • /* IOCTL commands of the UBI control character device */
  • #define UBI_CTRL_IOC_MAGIC ‘o‘
  • /* Attach an MTD device */
  • #define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
  • /* Detach an MTD device */
  • #define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, int32_t)
  • /* IOCTL commands of UBI volume character devices */
  • #define UBI_VOL_IOC_MAGIC ‘O‘
  • /* Start UBI volume update */
  • #define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, int64_t)
  • /* An eraseblock erasure command, used for debugging, disabled by default */
  • #define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, int32_t)
  • /* An atomic eraseblock change command */
  • #define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, int32_t)
  • /* Maximum MTD device name length supported by UBI */
  • #define MAX_UBI_MTD_NAME_LEN 127
  • /*
  • * UBI data type hint constants.
  • *
  • * UBI_LONGTERM: long-term data
  • * UBI_SHORTTERM: short-term data
  • * UBI_UNKNOWN: data persistence is unknown
  • *
  • * These constants are used when data is written to UBI volumes in order to
  • * help the UBI wear-leveling unit to find more appropriate physical
  • * eraseblocks.
  • */
  • enum {
  • UBI_LONGTERM = 1,
  • UBI_SHORTTERM = 2,
  • UBI_UNKNOWN = 3,
  • };
  • /*
  • * UBI volume type constants.
  • *
  • * @UBI_DYNAMIC_VOLUME: dynamic volume
  • * @UBI_STATIC_VOLUME: static volume
  • */
  • enum {
  • UBI_DYNAMIC_VOLUME = 3,
  • UBI_STATIC_VOLUME = 4,
  • };
  • /**
  • * struct ubi_attach_req - attach MTD device request.
  • * @ubi_num: UBI device number to create
  • * @mtd_num: MTD device number to attach
  • * @vid_hdr_offset: VID header offset (use defaults if %0)
  • * @padding: reserved for future, not used, has to be zeroed
  • *
  • * This data structure is used to specify MTD device UBI has to attach and the
  • * parameters it has to use. The number which should be assigned to the new UBI
  • * device is passed in @ubi_num. UBI may automatically assign the number if
  • * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
  • * @ubi_num.
  • *
  • * Most applications should pass %0 in @vid_hdr_offset to make UBI use default
  • * offset of the VID header within physical eraseblocks. The default offset is
  • * the next min. I/O unit after the EC header. For example, it will be offset
  • * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
  • * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
  • *
  • * But in rare cases, if this optimizes things, the VID header may be placed to
  • * a different offset. For example, the boot-loader might do things faster if the
  • * VID header sits at the end of the first 2KiB NAND page with 4 sub-pages. As
  • * the boot-loader would not normally need to read EC headers (unless it needs
  • * UBI in RW mode), it might be faster to calculate ECC. This is weird example,
  • * but it real-life example. So, in this example, @vid_hdr_offer would be
  • * 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
  • * aligned, which is OK, as UBI is clever enough to realize this is 4th sub-page
  • * of the first page and add needed padding.
  • */
  • struct ubi_attach_req {
  • int32_t ubi_num;
  • int32_t mtd_num;
  • int32_t vid_hdr_offset;
  • uint8_t padding[12];
  • };
  • /**
  • * struct ubi_mkvol_req - volume description data structure used in
  • * volume creation requests.
  • * @vol_id: volume number
  • * @alignment: volume alignment
  • * @bytes: volume size in bytes
  • * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
  • * @padding1: reserved for future, not used, has to be zeroed
  • * @name_len: volume name length
  • * @padding2: reserved for future, not used, has to be zeroed
  • * @name: volume name
  • *
  • * This structure is used by user-space programs when creating new volumes. The
  • * @used_bytes field is only necessary when creating static volumes.
  • *
  • * The @alignment field specifies the required alignment of the volume logical
  • * eraseblock. This means, that the size of logical eraseblocks will be aligned
  • * to this number, i.e.,
  • *    (UBI device logical eraseblock size) mod (@alignment) = 0.
  • *
  • * To put it differently, the logical eraseblock of this volume may be slightly
  • * shortened in order to make it properly aligned. The alignment has to be
  • * multiple of the flash minimal input/output unit, or %1 to utilize the entire
  • * available space of logical eraseblocks.
  • *
  • * The @alignment field may be useful, for example, when one wants to maintain
  • * a block device on top of an UBI volume. In this case, it is desirable to fit
  • * an integer number of blocks in logical eraseblocks of this UBI volume. With
  • * alignment it is possible to update this volume using plane UBI volume image
  • * BLOBs, without caring about how to properly align them.
  • */
  • struct ubi_mkvol_req {
  • int32_t vol_id;
  • int32_t alignment;
  • int64_t bytes;
  • int8_t vol_type;
  • int8_t padding1;
  • int16_t name_len;
  • int8_t padding2[4];
  • char name[UBI_MAX_VOLUME_NAME + 1];
  • } __attribute__ ((packed));
  • /**
  • * struct ubi_rsvol_req - a data structure used in volume re-size requests.
  • * @vol_id: ID of the volume to re-size
  • * @bytes: new size of the volume in bytes
  • *
  • * Re-sizing is possible for both dynamic and static volumes. But while dynamic
  • * volumes may be re-sized arbitrarily, static volumes cannot be made to be
  • * smaller then the number of bytes they bear. To arbitrarily shrink a static
  • * volume, it must be wiped out first (by means of volume update operation with
  • * zero number of bytes).
  • */
  • struct ubi_rsvol_req {
  • int64_t bytes;
  • int32_t vol_id;
  • } __attribute__ ((packed));
  • /**
  • * struct ubi_leb_change_req - a data structure used in atomic logical
  • * eraseblock change requests.
  • * @lnum: logical eraseblock number to change
  • * @bytes: how many bytes will be written to the logical eraseblock
  • * @dtype: data type (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
  • * @padding: reserved for future, not used, has to be zeroed
  • */
  • struct ubi_leb_change_req {
  • int32_t lnum;
  • int32_t bytes;
  • uint8_t dtype;
  • uint8_t padding[7];
  • } __attribute__ ((packed));
  • #endif /* __UBI_USER_H__ */

3. 常见问题

(1) ubifs_check_node: bad CRC: calculated 0xca82b3d7, read 0x9be0e26

ubifs_check_node: bad node at LEB 51:45312

注意这个crc错误,说的错误并不是LED 0的问题,也就是说第一个逻辑块没问题,CRC是正确的,这个问题的一个解决办法是要精确mkfs.ubifs时候的-c参数的值,不能太大了

(2)

[    5.433349] UBIFS error (pid 71): ubifs_read_node: bad node type (150 but expected 1)
[    5.434204] UBIFS error (pid 71): ubifs_read_node: bad node at LEB 524:4072, LEB mapping status 1
[    5.435241] Not a node, first 24 bytes:
[    5.435729] 00000000: 34 fb 21 ee 84 18 69 2d 60 b0 33 e6 74 f8 1c 15 da ca a1 c9 96 e3 ac 51                          4.!...i-`.3.t..........Q

这个问题是,ubifs给nand驱动的buffer不一定是按照硬件对齐要求的,所以要驱动来判断,dma等地址需要页对齐等特性

(3) crc错误,但是LED 0:0

可能镜像没烧对,或者mtd-utils的版本和内核版本相差较远

(4) 可以擦掉一个分区,并不需要非要烧写image到那个分区,也可以直接mount的,这样可以做实验验证ubi的性能,前提是kernel配置好了,mount正确了

(5) 如果是跟文件系统或者要手动mount,以下步骤供参考:

uboot里, mtd命令后,看到需要用ubifs的mtd分区的编号,比如

device nand0 <rda_nand>, # parts = 10
 #: name                size            offset          mask_flags
 0: bootloader          0x00200000      0x00000000      0
 1: boot                0x00800000      0x00800000      0
 2: system              0x08000000      0x02000000      0

system分区mtd编号是2,命令如下:

nand erase.part system

命令行参数增加

ubi.mtd=2,如果有多个,可以增加,如ubi.mtd=2,ubi.mtd=1,这样传递后,内核启动后会做attach的操作,类似android的init中的attach那样,attach之后,/dev/下就建立好设备了,进入系统后用:

内核控制台里,mount -t ubifs /dev/ubi0_0 /mnt 即可mount

转自:http://www.cnblogs.com/linucos/p/3279381.html

时间: 2024-10-05 19:59:18

ubi使用(转)的相关文章

ubi文件系统制作,还是&quot;-c&quot;选项的问题

以下是分析记录: ------------------------------------------------------------------------------ 以上命令的参数可从 ubifs 挂载信息中提取: UBI: attaching mtd5 to ubi0 UBI: physical eraseblock size:   131072 bytes (128 KiB) // -p:物理擦除块大小 UBI: logical eraseblock size:    129024

文件系统笔记ext4 yaffs2 fat ubi

因为是笔记,那就简单的分几个模块简单的记录下学习的内容好了. Linux 支持几种不同的文件系统.每个文件系统都有自己的优缺点和性能特征.文件系统的一个重要属性是日志,它允许系统在崩溃后更快地恢复.通常,日志文件系统比非日志文件系统更好.ext4和yaffs2是日志类型的文件系统. 日志文件系统就是一种具有故障恢复能力的文件系统,它利用日志来记录尚未提交到文件系统的修改,以防止元数据破坏(请参见图 1).但是如众多其他 Linux 解决方案一样,日志文件系统有多种方案供您选择.下面就让我们一起简

Linux UBI子系统设计初探

问题领域 flash存储设备存在如下特点: 存在坏块 使用寿命较短 存储介质不稳定 读写速度慢 不支持随机访问(nand) 只能通过擦除将0改成1 最小读写单位为page or sub-page 便宜 针对flash设备的特点,flash文件系统的核心功能需求和质量需求需包括如下这几个方面: 读写 性能 可靠性 持久性 针对这些需求,可分析得出flash文件系统需要满足如下属性要求: 数据保护 坏块管理 垃圾回收 磨损均衡 分区管理 文件管理 性能优化 在ubifs文件系统中,这7条属性中的数据

ubi 文件系统加载失败原因记录

尝试升级 kernel 到 4.4.12版本,然后出现 kernel 加载 ubi 文件系统失败的现象,现象如下 [ 3.152220] ubi0 error: vtbl_check: too large reserved_pebs 1908, good PEBs 1860 [ 3.160054] ubi0 error: vtbl_check: volume table check failed: record 0, error 9 经过查找,是因为 ubi 文件系统制作过大的原因. // 修改

page size == 4096 , nand size == 1GB, block size == 256kb 的ubi 文件系统制作

mkubiimg.sh 2 sudo mkfs.ubifs -F -q -r rootfs_ecm_5410 -m 4096 -e 253952 -c 3600 -o ubifs.img 3 4 echo mkfs.ubifs over! 5 sudo ubinize -o ubi.img -m 4096 -p 256KiB -s 4096 -O 4096 ubinize.cfg 6 echo ubinize over! 7 8 sync 9 10 sudo cp ubi.img ~/image

am335x_evm ubi文件系统编译

TI sdk文件夹下的filesystem文件夹下有两份根文件系统源码包,arago-base-tisdk-image-am335x-evm是最小文件系统(可能还可以优化),另一个包含QT等其他丰富资源.具体过程参考文档 Ubifs文件系统的制作和启动 1.安装编译工具特别注意不要使用apt-get安装,按照文档操作,参见https://e2echina.ti.com/question_answer/dsp_arm/davinci_digital_media_processors/f/39/t/

内核启动时在挂载ubi文件系统时提示UBIFS error (ubi0:0 pid 1): ubifs_read_superblock: min. I/O unit mismatch

一.背景 1.1 笔者机器的内核错误信息如下: UBIFS error (ubi0:0 pid 1): ubifs_read_superblock: min. I/O unit mismatch: 2048 in superblock, 8 real 1.2 笔者为ubi文件提供的flash分区大小为32MiB 二.解决方法 修改在制作ubi文件系统时的页面大小参数 mkfs.ubifs的-m是用来指定页面大小参数的,当然其它参数也是需要适当调整的 如笔者原来的参数为:-m 2048 -e 12

一种分片更新ubi卷的方式(基于ubiupdatevol,拓展fifo支持)

ubi卷的更新方式 对于ubi卷,不能像普通块设备一样进行随机读写.每次更新需要从头写入. 具体的,需要在打开对应的设备之后,先执行一个ioctl UBI_IOCVOLUP,同时传入要更新的数据大小. 随后开始写入数据.写入可以分多次,但必须写满ioctl指定的需要更新的数据量. 写入足够的数据量之后,ubi才算更新完成.提前中断的话,该卷会被破坏,只能重新开始一次更新才能修复它. fd = open("/dev/my_volume"); ioctl(fd, UBI_IOCVOLUP,

S5PV210-kernel-内核启动过程分析

1.1.内核启动过程分析前的准备 1.拿到一个内核源码时,先目录下的无用文件删除 2.建立SI工程 3.makefile (1)makefile中不详细的去分析,几个关键的地方,makefile开始部分是kernel的版本号,这个版本号比较重要,因为在模块化驱动安装时会需要用到,要注意会查,会改,版本号在makefile中,改直接改的就行 (2)kernel顶层的makefile中定义的两个变量很重要,一个是ARCH,一个CROSS,ARCH表示我们当前的配置编译路径,如果我们的ARCH =AR