我读过的最好的epoll讲解--转自”知乎“

首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象.

不管是文件,还是套接字,还是管道,我们都可以把他们看作流.

之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据;通过write,我们可以往流写入数据. 现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,但是服务器还没有把数据传回来),这时候该怎么办?

阻塞:阻塞是个什么概念呢?比如某个时候你在等快递,但是你不知道快递什么时候过来,而且你没有别的事可以干(或者说接下来的事要等快递来了才能做);那么你可以去睡觉了,因为你知道快递把货送来时一定会给你打个电话(假定一定能叫醒你).

非阻塞忙轮询:接着上面等快递的例子,如果用忙轮询的方法,那么你需要知道快递员的手机号,然后每分钟给他挂个电话:“你到了没?”

很明显一般人不会用第二种做法,不仅显很无脑,浪费话费不说,还占用了快递员大量的时间.

大部分程序也不会用第二种做法,因为第一种方法经济而简单,经济是指消耗很少的CPU时间,如果线程睡眠了,就掉出了系统的调度队列,暂时不会去瓜分CPU宝贵的时间片了.

为了了解阻塞是如何进行的,我们来讨论缓冲区,以及内核缓冲区,最终把I/O事件解释清楚. 缓冲区的引入是为了减少频繁I/O操作而引起频繁的系统调用(你知道它很慢的),当你操作一个流时,更多的是以缓冲区为单位进行操作,这是相对于用户空间而言. 对于内核来说,也需要缓冲区.

假设有一个管道,进程A为管道的写入方,B为管道的读出方.

假设一开始内核缓冲区是空的,B作为读出方,被阻塞着. 然后首先A往管道写入,这时候内核缓冲区由空的状态变到非空状态,内核就会产生一个事件告诉B该醒来了,这个事件姑且称之为“缓冲区非空”.

但是“缓冲区非空”事件通知B后,B却还没有读出数据;且内核许诺了不能把写入管道中的数据丢掉这个时候,A写入的数据会滞留在内核缓冲区中,如果内核也缓冲区满了,B仍未开始读数据,最终内核缓冲区会被填满,这个时候会产生一个I/O事件,告诉进程A,你该等等(阻塞)了,我们把这个事件定义为“缓冲区满”.

假设后来B终于开始读数据了,于是内核的缓冲区空了出来,这时候内核会告诉A,内核缓冲区有空位了,你可以从长眠中醒来了,继续写数据了,我们把这个事件叫做“缓冲区非满”

也许事件Y1已经通知了A,但是A也没有数据写入了,而B继续读出数据,知道内核缓冲区空了. 这个时候内核就告诉B,你需要阻塞了? 颐前颜飧鍪奔涠ㄎ盎撼迩铡?

这四个情形涵盖了四个I/O事件,缓冲区满,缓冲区空,缓冲区非空,缓冲区非满(注都是说的内核缓冲区,且这四个术语都是我生造的,仅为解释其原理而造). 这四个I/O事件是进行阻塞同步的根本. (如果不能理解“同步”是什么概念,请学习操作系统的锁,信号量,条件变量等任务同步方面的相关知识).

然后我们来说说阻塞I/O的缺点. 但是阻塞I/O模式下,一个线程只能处理一个流的I/O事件. 如果想要同时处理多个流,要么多进程(fork),要么多线程(pthread_create),很不幸这两种方法效率都不高.

于是再来考虑非阻塞忙轮询的I/O方式,我们发现我们可以同时处理多个流了(把一个流从阻塞模式切换到非阻塞模式再此不予讨论):

while true {

  for i in stream[]; {

    if i has data

    read until unavailable

  }

}

我们只要不停的把所有流从头到尾问一遍,又从头开始. 这样就可以处理多个流了,但这样的做法显然不好,因为如果所有的流都没有数据,那么只会白白浪费CPU. 这里要补充一点,阻塞模式下,内核对于I/O事件的处理是阻塞或者唤醒,而非阻塞模式下则把I/O事件交给其他对象(后文介绍的select以及epoll)处理甚至直接忽略.

为了避免CPU空转,可以引进了一个代理(一开始有一位叫做select的代理,后来又有一位叫做poll的代理,不过两者的本质是一样的). 这个代理比较厉害,可以同时观察许多流的I/O事件,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有I/O事件时,就从阻塞态中醒来,于是我们的程序就会轮询一遍所有的流(于是我们可以把“忙”字去掉了). 代码长这样:

while true {

  select(streams[])

  for i in streams[] {

    if i has data

    read until unavailable

  }

}

于是,如果没有I/O事件产生,我们的程序就会阻塞在select处. 但是依然有个问题,我们从select那里仅仅知道了,有I/O事件发生了,但却并不知道是那几个流(可能有一个,多个,甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作.

但是使用select,我们有O(n)的无差别轮询复杂度,同时处理的流越多,没一次无差别轮询时间就越长. 再次

说了这么多,终于能好好解释epoll了

epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll之会把哪个流发生了怎样的I/O事件通知我们. 此时我们对这些流的操作都是有意义的. (复杂度降低到了O(1))

在讨论epoll的实现细节之前,先把epoll的相关操作列出:

epoll_create 创建一个epoll对象,一般epollfd = epoll_create()

epoll_ctl (epoll_add/epoll_del的合体),往epoll对象中增加/删除某一个流的某一个事件

比如

epoll_ctl(epollfd, EPOLL_CTL_ADD, socket, EPOLLIN);//注册缓冲区非空事件,即有数据流入

epoll_ctl(epollfd, EPOLL_CTL_DEL, socket, EPOLLOUT);//注册缓冲区非满事件,即流可以被写入

epoll_wait(epollfd,...)等待直到注册的事件发生

(注:当对一个非阻塞流的读写发生缓冲区满或缓冲区空,write/read会返回-1,并设置errno=EAGAIN. 而epoll只关心缓冲区非满和缓冲区非空事件).

一个epoll模式的代码大概的样子是:

while true {

  active_stream[] = epoll_wait(epollfd)

  for i in active_stream[] {

    read or write till

  }

}

限于篇幅,我只说这么多,以揭示原理性的东西,至于epoll的使用细节,请参考man和google,实现细节,请参阅linux kernel source.

时间: 2024-11-10 07:34:48

我读过的最好的epoll讲解--转自”知乎“的相关文章

我读过的最好的epoll讲解--转自”知乎“ 【转】

转自:http://blog.csdn.net/xu3737284/article/details/12715963 首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象. 不管是文件,还是套接字,还是管道,我们都可以把他们看作流. 之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据:通过write,我们可以往流写入数据.现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,但是服务器

我读过的最好的epoll讲解(转)

原文:http://zhihu.com/question/20122137/answer/14049112 作者:蓝形参来源:知乎 首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象.不管是文件,还是套接字,还是管道,我们都可以把他们看作流.之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据:通过write,我们可以往流写入数据.现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,

epoll讲解--转自”知乎“

http://my.oschina.net/dclink/blog/287198 首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象. 不管是文件,还是套接字,还是管道,我们都可以把他们看作流. 之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据:通过write,我们可以往流写入数据.现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,但是服务器还没有把数据传回来),这时候该怎么办

epoll讲解

首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象. 不管是文件,还是套接字,还是管道,我们都可以把他们看作流. 之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据:通过write,我们可以往流写入数据.现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,但是服务器还没有把数据传回来),这时候该怎么办? 阻塞:阻塞是个什么概念呢?比如某个时候你在等快递,但是你不知道快递什么时候过来

epoll简介

Linux下谈论I/O复用.高并发,一定会说到epoll.因为epoll是最有效的I/O复用方式. epoll的使用非常简单,总共3个API: // 创建epoll对象 int epoll_create(int size); Linux2.6.8之后,size参数已被忽略,为了向前兼容,size大于0即可. // 向epoll对象中添加.修改或删除事件 int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); op有3

计算机科学精彩帖子收集

inux源码 LXR 源自"the Linux Cross Referencer",中间的"X"形象地代表了"Cross".与 Source Navigator 类似,它也是分析阅读源代码的好工具.不同的是,它将源代码借助浏览器展示出来,文件间的跳转过程成了我熟悉的点击超链接动作. http://lxr.linux.no/   LXR安装过程简介 linux手册 http://linux.die.net/man/ Linux每周新闻 http:/

《大数据日知录:架构与算法》试读

时代背景 记得CSDN之前有篇文章描写叙述了大数据成功预測了美国大选,"大数据"并不真正关心谁来当选下一届美国总统.只是全部的数据都显示:政治科学家和其它人相关人士都觉得奥巴马获得连任可能性比較大.本次的成功预言,展示了大数据强大的能量. 众所周知.企业数据本身就蕴藏着价值.可是将实用的数据与没有价值的数据进行区分看起来可能是一个棘手的问题. 显然,您所掌握的人员情况.工资表和客户记录对于企业的运转至关重要.可是其它数据也拥有转化为价值的力量.一段记录人们怎样在您的商店浏览购物的视频.

MTD技术介绍

MTD(Memory Technology device)是用于访问memory设备(ROM.Flash)的Linux子系统,在Linux中引入这一层的主要目的是为了更加简单的添加新的Memory存储设备,它提供一层抽象的接口. 从上图可以看出,mtd原始设备层可以让底层Flash以字符设备呈现为应用层,表现形式为/dev/mtdN,也可以以块设备呈现给应用层,表现形式为/dev/mtdblockN.在应用层面上,对于字符形式的Flash设备,可以通过mtd-utils工具来控制.对于块设备形式

数据分析经典图书推荐

一.基础知识:我们都该学点统计学? 统计学是一门以概率论为基础的方法论学科,主要通过收集数据,进行量化的分析.总结,并进而进行推断和预测,为相关决策提供依据和参考.它在几乎所有学科领域里面都具有重要的应用,从物理.社会科学到人文科学,甚至被用来工商业及政府的情报决策之上. 往近了说,想要成为一名数据分析师或已是数据分析师需要提高的,必须掌握最基本的统计基础知识.统计思想:下面给推荐的,是目前市面上有关统计学原理写的相当不错的一些图书,供大家学习参考!! 1.<深入浅出统计学> 购买地址:京东