Reshape包

#rshape2
#活动代码  城市
#1    上海
#1    广州
#1    深圳
#2    上海
#2    北京
#2    台湾
#3    上海
#3    江西
#4    沈阳
#4    广州
data <- read.csv("C:\\Users\\Jennifer\\Desktop\\11.csv",header=T,sep="\t")
head(data)
y <- melt(data,id=c("活动代码"),measure=c("城市"),na.rm=T)
y
z <- dcast(y,活动代码~value)
z
z <- dcast(y,活动代码~value,fill="")#value with which to fill in structural missings
z

Reshape包

时间: 2024-12-22 13:37:51

Reshape包的相关文章

R语言进阶之4:数据整形(reshape)

一.通过重新构建数据进行整形 数据整形最直接的思路就把数据全部向量化,然后按要求用向量构建其他类型的数据.这样是不是会产生大量的中间变量.占用大量内存?没错.R语言的任何函数(包括赋值)操作都会有同样的问题,因为R函数的参数传递方式是传值不传址,变量不可能原地址修改后再放回原地址. 矩阵和多维数组的向量化有直接的类型转换函数: as.vector,向量化后的结果顺序是先列后行再其他: > (x <- matrix(1:4, ncol=2))  #为节省空间,下面的结果省略了一些空行 [,1] 

R语言初识

# 创建数据集&基本数据管理1.向量 创建函数 c() a <- c(1,2,3,4) a[c(i,j)] :[]给定元素所处位置的数值,即向量a中第i和第j个元素,a[2]第二个元素即2 length(a):返回向量a中元素的个数2.矩阵 创建函数 X<-matrix(数据,nrow=n,ncol=m) +使用下标及方括号[]来选择矩阵中的行.列或元素,X[i,],第i行 +将矩阵转化为数据框 dataframe <-as.data.frame(matircname)3.数组

第4章--基本数据管理

4.1 创建新变量 在典型的项目研究中,你可能需要创建新的变量或者对现有的变量进行变换.这可以通过以下语句来完成: 变量名←表达式 以上语句中的表达式部分可以分成包含多种运算符合函数. 4.2 变量的重编码 重编码涉及根据同一个变量和/或其他变量的现有值创建新值的过程.其中涉及到: 将一个连续型变量修改为一组类别值: 将误编码的值替换为正确值: 基于一组分数线创建一个表示及格/不及格的变量 函数within(),它允许你修改数据框. 4.3 变量的重命名 可以使用一个fix()的函数来调用一个交

R入门&lt;三&gt;-R语言实战第4章基本数据管理摘要

入门书籍:R语言实战 进度:1-4章 摘要: 1)实用的包 forecast:用于做时间序列预测的,有auto.arima函数 RODBC:可以用来读取excel文件.但据说R对csv格式适应更加良好,相应的导入导出均较为方便(read.table, write等) reshape:目前用到rename函数,可以方便的对数据变量重命名 fCalendar:在日期输入处提及,据说对日期运算有奇效,但无具体示例.同理如lubridate sqldf:在数据选取处提及,可代替subset以及各种whe

《R语言实战》学习笔记seventh

由于在准备软考中级数据库系统工程师外加巩固SQL Server 2012,所以拖了好久一直没继续学R 下去 所以今天重开R 的战事 这次是关于基本统计分析的内容,即关于用于生成基本的描述性统计量和推断统计量的R 函数 首先,将着眼于定量变量的位置和尺度的衡量方式 然后将是生成类别型变量的频数表和列联表的方法(以及连带的卡方检验) 接下来将考察连续型和有序型变量相关系数的多种形式 最后转而通过参数检验(t检验)和非参数检验(Mann-Whitney U检验.Kruskal-Wallis检验)方法研

R语言基本备忘-统计分析

Part1 相关统计量说明 峰度系数Coefficientof kurtosis http://baike.baidu.com/link?url=gS_sgtNYSRdjLnadNWDDa357DIzJma-tdheAx5eKp0WzTvuH_PYg8hnMNIiP4-DRmewtftVQXXUbtIYzvz4bTq 峰度系数(Kurtosis)用来度量数据在中心聚集程度.在正态分布情况下,峰度系数值是3(但是SPSS等软件中将正态分布峰度值定为0,是因为已经减去3,这样比较起来方便).>3的峰

R语言实战读书笔记(七)基本统计分析

summary() sapply(x,fun,options):对数据框或矩阵中的每一个向量进行统计 mean sd:标准差 var:方差 min: max: median: length: range: quantile: vars <- c("mpg", "hp", "wt")head(mtcars[vars]) summary(mtcars[vars]) mystats <- function(x, na.omit = FALS

为什么数据科学家们选择了Python语言?

本文由 伯乐在线 - HanSir 翻译,toolate 校稿 英文出处:Quora [伯乐在线导读]:这个问题来自 Quora,题主还补充说,“似乎很多搞数据的程序员都挺擅长 Python 的,这是为什么呢?”下面是 Jeff Hammerbacher 的回复.(693 赞) Python是一种解释型.动态语言,具有明确而高效的语法.Python具有良好的REPL(Read-Eval-Print Loop ,‘读取-求值-输出’循环),还可以通过dir()和文档字符串从REPL中开发新模块.这

《R语言实战》(中文完整版)pdf

下载地址:网盘下载 基本介绍 编辑 原作名: R in Action[2] 作者: Robert I. Kabacoff 译者: 高涛 / 肖楠 / 陈钢 出版社: 人民邮电出版社 出版年: 2013-1 页数: 388 定价: 79.00元 装帧: 平装 ISBN: 978-711-529-990-1 内容简介 编辑 数据时代已经到来,但数据分析.数据挖掘人才却十分短缺.由于"大数据"对每个领域的决定性影响,相对于经验和直觉,在商业.经济及其他领域中基于数据和分析去发现问题并作出科学