函数对称性总结

就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以所涉及的函数对称性知识做一个粗略的总结。

一、对称性的概念及常见函数的对称性

1、对称性的概念   ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。   ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。

2、常见函数的对称性(所有函数自变量可取有意义的所有值)

①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。

③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。

④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。

⑤指数函数:既不是轴对称,也不是中心对称。

⑥对数函数:既不是轴对称,也不是中心对称。

⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。

⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。

⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上 高中各年级课件教案习题汇总语文 数学 英语 物理 化学 向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。

⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,(kπ+π/2,0)是它的对称中心。

11.正切函数:不是轴对称,但是是中心对称,其中(kπ/2,0)是它的对称中心,容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。

12.对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴,例如在处理函数y=x+1/x时误以为会有f0.5)=f(1.5),我在教学时总是问学生:你可看见过老师将“√”两边画得一样齐?学生们立刻明白并记忆深刻。

13三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

14 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。

二、函数的对称性猜测

1、具体函数特殊的对称性猜测

①一个函数一般是不会关于x轴的   这是由函数定义决定的,因为一个x不会对应两个y的值。但我们在此略微引申,一个曲线是可能关于x轴对称的。   例1判断曲线y^2=4x的对称性。

②函数关于y轴对称   例2判断函数y=cos(sin(x))的对称性。

③函数关于原点对称   例3判断函数y=(x^3)×sinx的对称性。

④函数关于y=x对称   例4判断函数y=1/x的对称性。

⑤函数关于y=-x对称   例5判断函数y=-4/x的对称性。

我总结为:设(x,y)为原曲线图像上任一点,  如果(x,-y)也在图像上,则该曲线关于x轴对称;  如果(-x,y)也在图像上,则该曲线关于y轴对称;  如果(-x,-y)也在图像上,则该曲线关于原点对称;  如果(y,x)也在图像上,则该曲线关于y=x对称;  如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。

2、抽象函数的对称性猜测

①轴对称

例6             如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。

(任意取值代入例如x=0有f(1)=f(4),正中间2.5,从而该函数关于x=2.5对称)

例7              如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。

(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称)

例8           如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。

(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)

②中心对称

例9           如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。

(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

例10如果函数y=f(x)满足f(-x)+f(x)=0,求该函数的所有对称中心。

(按上例一样的方法可以猜出对称中心为(0,0),可见奇函数是特殊的中心对称)

例11如果f(x)为奇函数,并且f(x+1)+f(x+3)=0,求该函数的所有对称中心和对称轴。

(由周期性定义知周期为4,又f(x+1)=-f(x+3),从而f(x+1)=f(-x-3),按上例知x=-1为对称轴,所以x=-1+2n为对称轴,(2k,0)为对称中心,其中k∈Z)

我总结为:

①当括号里面x前面的符号一正一负时告诉我们的就是对称性,其中的对称为多少我们可以用特殊值代入来猜测,这里并不主张记结论,因为很容易与后面的结论相混淆。

②而当x前面的符号相同时告诉我们的是周期性。例如f(x+1)=f(x-5)是告诉我们它以6为周期。

③当x前面的符号相同,同时告诉我们奇偶性时我们也可以推出对称性,因为奇偶性有制造负号的能力。  3、两个抽象函数之间的对称性猜测   例12求y=f(x+2)与y=f(1-x)的对称轴方程。(当第一个函数的x取0时,值为f(2),这时第二个函数的x必须取-1才也对应那么多,他们的正中间为-1.5,因而猜测对称轴为x=-1.5)

我总结为:

①当括号里面x前面的符号一正一负时告诉我们的就是对称性,其中的对称为多少我们仍然可以用特殊值代入来猜测,这里仍然不主张记结论,因为很容易与前面的结论相混淆。

②而当x前面的符号相同时告诉我们的是图像平移。例如y=f(x+2)与y=f(x-1),前者是由后者向左移三个单位得到。

三、对称性的证明   如果在解答大题时仅仅猜测出结论是不够的,我们要辅以完整的证明才行。

1、一个函数的对称性证明

例13证明如果函数y=f(x)满足f(a+x)=f(b-x),则该函数关于直线x=(a+b)/2对称。

证明:在y=f(x)上任取点(m,n),则n=f(m),而点(m,n)关于x=(a+b)/2的对称点为(a+b-m,n),又因为f(a+b-m)=f(a+(b-m))=f(b-(b-m))=f(m)=n,这正表明(a+b-m,n)也在原函数图像上,从而原函数关于直线x=(a+b)/2对称。

我总结为:核心是间接法,即在函数上任取一点,对称点如果仍在函数图像上,我们就可以下结论该函数关于它对称。

2、两个函数之间的对称性的证明

例14证明函数y=f(a+x)与函数y=f(b-x)关于直线x=(b-a)/2对称。(注意不是(a-b)/2,证明的方法类似于上例方法)

我总结为:仍是间接法,但是多一次,需在函数上任取一点,对称点如果在对方函数图像上,同时在对方函数上任取一点,对称点又在该函数图像上,我们才可以下结论该函数关于它对称。取两次的原因是以免两个图像一个只是另一个对称过来图像的一部分。

3、特别地关于y=x对称性的证明   例15证明y=(2x+1)/(3x-2)关于y=x对称。

(只需求出它的反函数是自己即可)

我总结为:   ①一个函数自身关于y=x对称不需要用上面的间接法,只需要证明它的反函数是自己就可以了。   ②两个函数关于y=x对称性证明也不需要用上面那么繁琐的方法,只需证明两个函数互为反函数,即求一个的反函数为另外一个就可以了。   ③反过来这句话也成立,如果需要证明两个函数互为反函数,只需要证明它们的图像关于y=x对称即可。

四、对称性的运用

1、求值   例16已知f(x)=4^x/(4^x+1),求f(-4)+f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)+f(4)的值。(我们只需要考虑当两个自变量加起来为0时函数值的和是否为定值,验证果然。而这里显然隐含的是函数的对称性)

我总结为:“配对”,对称性主要是考查一对函数值之间的关系。

2、“对称性+对称性”可以推导出周期性

例17如果函数y=f(x)满足f(x+3)=f(2-x)和f(4+x)=f(5-x),求该函数的最小正周期。(因为f(x+3)=f(2-x)=f(4+(-2-x)) =f(5-(-2-x))=f(7+x)所以周期为4)   我总结为:两个对称性拼起来就可以将里面的符号化为同号,从而得出周期性。

3、“奇偶性+对称性”可以推导出周期性   这在前面已经提到,还是因为奇偶性有制造负号的能力。

4、三角函数的奇偶性

例18如果函数y=3sin(2x+θ+π/4)(其中0<θ<π)是奇函数,求θ的值。

(2x+θ+π/4=kπ,而x=0,所以θ+π/4=kπ,在要求的范围上只有θ=3π/4)

我总结为:几乎所有的三角函数的奇偶性都是当对称性来使用,先求出所有的对称轴,然后y轴是其中的一条(或者先求出所有的对称中心,然后原点是其中的一个)。

5、关于y=x对称的应用

例19求函数f(x)=e^(x+1)与函数g(x)=ln(x+1)的对称轴方程。

(因为f(x)=e^x与g(x)=lnx互为反函数,关于y=x对称,而f(x)=e^(x+1)是由f(x)=e^x向左移一个单位得到,g(x)=ln(x+1)也是由g(x)=lnx向左移一个单位得到,因而对称轴也跟着左移一个单位,即y=x+1)

6、对称性的本义

例20如果y=asinx+bcosx关于x=π/4对称,求直线ax+by+3=0的直线的斜率。(既然关于x=π/4对称,则f(0)=f(π/2)

时间: 2024-11-07 17:10:27

函数对称性总结的相关文章

数学常用化简技巧与常用公式【运算能力辅导】

A.代数部分 1. 繁分式化简分式 : \(\cfrac{\frac{1}{a}+\frac{2}{b}+\frac{1}{c}}{\frac{3}{ac}-\frac{1}{b}+\frac{4}{bc}}=\cfrac{(\frac{1}{a}+\frac{2}{b}+\frac{1}{c})\times abc}{(\frac{3}{ac}-\frac{1}{b}+\frac{4}{bc})\times abc}=\cfrac{bc+2ac+ab}{3b-ac+4a}\):同乘 2.分式中

函数的对称性习题

\(\fbox{例1}\)(2017?合肥模拟) 已知定义在\(R\)上的函数\(f(x)\)满足:\(f(x)=\begin{cases}x^2+2,&x\in[0,1)\\2-x^2,&[-1,0)\end{cases}\)且\(f(x+2)=f(x)\),\(g(x)=\cfrac{2x+5}{x+2} ,则方程\)f(x)=g(x)\(在区间\)[-5,1]$上的所有实根之和为___________. 解析:\(g(x)=\cfrac{2x+5}{x+2}=2+\cfrac{1}{

函数的增长

一旦输入规模n变得足够大,最坏情况运行时间为O(nlgn)的归并排序将战胜最坏情况运行时间为O(n^2)的插入排序. 正如我们在第2章中对插入排序所做的,虽然有时我们能够确定一个算法的精确运行时间,但是通常并不值得花力气来计算它一伙的多余的精度.对于足够大的输入,精确运行时间中的倍增常量和低阶项被输入规模本身的影响所支配. 当输入规模足够大,使得只有运行时间的增量级有关时,我们要研究算法的渐进效率.也就是说,我们关心当输入规模无限增加时,在极限中,算法的运行时间如何随着输入规模的变大而增加.通常

高斯函数以及在图像处理中的应用总结

1.一维高斯函数: a表示得到曲线的高度,b是指曲线在x轴的中心,c指width(与半峰全宽有关),图形如下: . 2.根据一维高斯函数,可以推导得到二维高斯函数: 在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小. 计算平均值的时候,我们只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值.常用作图像平滑操作. 例如:通常,图像处理软件会提供"模糊"(blur)滤镜,使图片产生模糊的效果. &q

poj3090欧拉函数求和

E - (例题)欧拉函数求和 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Description A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0

程序算法艺术与实践之二:函数的渐近的界

众所周知,算法所需的时间应当是随着其输入规模增长的,而输入规模与特定具体问题有关.对大多数问题来说其最自然的度量就是输入中的元素个数.算法的运行时间是指在特定输入时所执行的基本操作数.我们可以得到关于一个关于输入规模n的所需时间的函数.然而可以进一步简化算法的时间分析,我们进行进一步抽象,首先,忽略每条语句的真实代价,通过运行时间的增长率来度量一个算法在时间方面的表现.我们只考虑公式的最高次项,并忽略它的常数系数.本博文主要介绍一些相关的数学知识即:函数的渐近的界的定义与性质.常用的证明方法.

计算机图形学(二)输出图元_6_OpenGL曲线函数_1_圆生成算法

OpenGL曲线函数 生成圆和椭圆等基本曲线的函数并未作为图元功能包含在OpenGL核心库中.但该库包含了显示Bezier样条的功能,该曲线是由一组离散点定义的多项式.OpenGL实用库(GLU)中包含有球面和柱面等三维曲面函数以及生成B样条的函数,它是包含简化Bezier曲线的样条曲线的总集.我们可以使用有理B样条显示圆.椭圆和其他二维曲线.此外,OpenGL实用工具包(GLUT)中还有可以用来显示某些三维曲面(如球面.锥面和其他形体)的函数.然而,所有这些函数比本章中介绍的基本图元应用得更多

计算机图形学(二)输出图元_6_OpenGL曲线函数_2_中点画圆算法

中点画圆算法 如同光栅画线算法,我们在每个步中以单位间隔取样并确定离指定圆最近的像素位置.对于给定半径r和屏幕中心(xc,yc),可以先使用算法计算圆心在坐标原点(0, 0)的圆的像素位置,然后通过将xc加到x且yc加到y.从而把计算出的每个位置(x,y)移动到其适当的屏幕位置.在第一象限中,圆弧段从x = 0到x = y,曲线的斜率从0变化到-1.0.因此,可以在该八分圆上的正x方向取单位步长,并使用决策参数来确定每一步两个可能的y位置中,哪一个更接近于圆的位置.然后,其他七个八分圆中的位置可

UVa 10820 (打表、欧拉函数) Send a Table

题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1). 设f(n)为 集合S{(x, y) | x<y且x.y互素} 的个数,则所求答案为2f(n)+1 f(n)表达式为: ,其中φ(n)为欧拉函数 这里有欧拉函数的一些介绍 1 #include <cstdio> 2 3 const int maxn = 50000; 4 5 int ph