面试题10.2:青蛙变态跳台阶

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

编程思想

因为n级台阶,第一步有n种跳法:跳1级、跳2级、到跳n级
跳1级,剩下n-1级,则剩下跳法是f(n-1)
跳2级,剩下n-2级,则剩下跳法是f(n-2)
所以f(n)=f(n-1)+f(n-2)+...+f(1)
因为f(n-1)=f(n-2)+f(n-3)+...+f(1)
所以f(n)=2*f(n-1)=2^(n-1)

编程实现

class Solution {
public:
    int jumpFloorII(int number) {
        if(number <= 2)
        {
            return number;
        }
        int a = 1;
        int fn = 1;
        for(int i = 2;i <= number;++i)
        {
            fn = 2 * a;
            a = fn;
        }
        return fn;
    }
};

题目总结

注意与斐波那契数列的不同。

原文地址:https://www.cnblogs.com/parzulpan/p/11258381.html

时间: 2024-11-10 14:42:42

面试题10.2:青蛙变态跳台阶的相关文章

剑指offer9:青蛙变态跳台阶,1,2,3……,n。

1. 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 2. 思路和方法 每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后一个台阶必须跳.所以共用2^(n-1)中情况.换个表述可能更容易懂一点:小鸟要从起点0飞到终点N.中间有1~n-1个点可以中途停靠休息,它可以休息可以不休息,休息次数不限.问,到终点时,一共有多少种情况. 实现放方法: F(n) = F(n-1)+F(n-2)+...+F(1):F(n-1) = F

牛客网青蛙变态跳台阶问题

function jumpFloorII(number) { // write code here var result = [0,1,2]; var methodNum = 0; var n1 = 1; var n2 = 2; var temp = 0; if(number <=0){ return 0; }else if(number === 1){ return 1; }else if(number === 2){ return 2; }else{ /*for(var i = 3;i <

剑指OFFER之变态跳台阶(九度OJ1389)

题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n<=50). 输出: 对应每个测试案例, 输出该青蛙跳上一个n级的台阶总共有多少种跳法. 样例输入: 6 样例输出: 32 解题思路: 这道题目跟之前的跳台阶大同小异,只是跳台阶的阶数从1变到了n,也就是说,不再是跳一下或者跳两下的问题,而是跳n下的问题.那么解题的思路显然还得逆向分析,我们

变态跳台阶(递归算法)

台阶的级数:1,2,3,4,5,6..... 对应的跳法:1,2,4,8,16,32.... 最终结论 在n阶台阶,一次有1.2....n阶的跳的方式时,总得跳法为: | 1 ,(n=0 ) f(n) = | 1 ,(n=1 ) | 2*f(n-1) ,(n>=2) package suanfati; /* * 变态跳台阶 * 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级. * 求该青蛙跳上一个n级的台阶总共有多少种跳法. * 递归算法 */ public class Hig

[剑指Offer]2.变态跳台阶

题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1: 当n = 1 时. 仅仅有一种跳法,即1阶跳,即Fib(1) = 1; 当n = 2 时. 有两种跳的方式,一阶跳和二阶跳,即Fib(2) = Fib(1) + Fib(0) = 2; 当n = 3 时.有三种跳的方式,第一次跳出一阶台阶后,后面还有Fib(3-1)中跳法,第一次跳出二阶台阶后.

[剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) { if(number == 1) return 1; if(number == 2) return 2; int n1 = 1; int n2 = 2; int rtn = 0; for(int i = 3; i <= number; i++) { rtn = n1 + n2; n1 = n2;

剑指offer源码系列-变态跳台阶

题目1389:变态跳台阶 时间限制:1 秒内存限制:32 兆特殊判题:否提交:1906解决:1102 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n<=50). 输出: 对应每个测试案例, 输出该青蛙跳上一个n级的台阶总共有多少种跳法. 样例输入: 6 样例输出: 32 解法分析: 分析:用Fib(n)表示青蛙跳上n阶台阶的跳法数,青蛙

(原)剑指offer变态跳台阶

变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析一下明天是个斐波那契数列,我们一步一步退出其通项公式. 设台阶数为n, 总跳法为jumps n          jumps 1 1 2 2 3 4 4 8 5 16 现在猜测其通项公式为 fbonicc(n) = 2 * fbonicc(n - 1) 列出4的全部跳法 5的全部跳法 1111 1111 (1) 2  11

跳台阶问题(递归、动态规则、变态跳台阶)

题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 分析:青蛙每次只有一阶或者两阶两种跳法,那么: 假设第一次跳的是一阶,那么剩下的n-1个台阶,跳法是f(n-1) 假设第一次跳的是两阶,那么剩下的n-2个台阶,跳法是f(n-2) 由上面两种假设可得:f(n) = f(n-1) + f(n-2) 由实际情况可知:f(1) = 1,f(2) = 2 最终得出的是一个斐波那契数列: |  1,n = 1 f(n)   =       |  2, n =