SPARK之分区器

Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数

  • 只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD分区器的值是None
  • 每个RDD的分区ID范围:0~numPartitions-1,决定这个值是属于那个分区的

原文地址:https://www.cnblogs.com/xiangyuguan/p/11456801.html

时间: 2024-10-12 18:50:15

SPARK之分区器的相关文章

spark自定义分区器

1.spark中默认的分区器: Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数.RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数. 只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD分区器的值是None 每个RDD的分区ID范围:0~numPartitions-1,决定这个值是属于那个分区的2. 参考博客:https://www.jianshu.

spark自定义分区器实现

在spark中,框架默认使用的事hashPartitioner分区器进行对rdd分区,但是实际生产中,往往使用spark自带的分区器会产生数据倾斜等原因,这个时候就需要我们自定义分区,按照我们指定的字段进行分区.具体的流程步骤如下: 1.创建一个自定义的分区类,并继承Partitioner,注意这个partitioner是spark的partitioner 2.重写partitioner中的方法 override def numPartitions: Int = ??? override def

Apache Flink流分区器剖析

这篇文章介绍Flink的分区器,在流进行转换操作后,Flink通过分区器来精确得控制数据流向. StreamPartitioner StreamPartitioner是Flink流分区器的基类,它只定义了一个抽象方法: public abstract StreamPartitioner<T> copy(); 但这个方法并不是各个分区器之间互相区别的地方,定义不同的分区器的核心在于--各个分区器需要实现channel选择的接口方法: int[] selectChannels(T record,

Cassandra数据分布之5分区器

分区器决定了数据在集群中节点的分布.分区器的功能是通过为每一行数据的分区键(partion key)分配一个令牌(token),然后通过这个令牌(token)将数据保存在cassandra集群中. Cassandra提供了如下如下4种分区器.Cassandra中的实现如下图: ByteOrderedPartitioner:有序分区器,它将键值数据看做是裸字节. LocalPartitioner:对分区键未做任何处理的分区器. Murmur3Partitioner:基于MurmurHash哈希算法

Parallel中分区器Partitioner的简单使用

Partitioner.Create(1,10,4).GetDynamicPartitions() 为长度为10的序列创建分区,每个分区至多4个元素,分区方法及结果:Partitioner.Create(0, 10, 4).GetDynamicPartitions() 得到3个前闭后开区间: [0, 4)即{0, 1, 2, 3}, [4, 8)即{4, 5, 6, 7}, [8, 10)即{8, 9},  注意被枚举的数字均为数组下标: 为长度为10的序列创建分区,至多4个分区,分区方法及结果

spark自定义分区及示例代码

有时自己的业务需要自己实现spark的分区函数 以下代码是实现一个自定义spark分区的demo 实现的功能是根据key值的最后一位数字,写到不同的文件 例如: 10写入到part-00000 11写入到part-00001 . . . 19写入到part-00009 给读者提供一个自定义分区的思路 import org.apache.spark.{Partitioner, SparkContext, SparkConf} //自定义分区类,需继承Partitioner类 class Usrid

Kafka 分区分配计算(分区器 Partitions )

KafkaProducer在调用send方法发送消息至broker的过程中,首先是经过拦截器Inteceptors处理,然后是经过序列化Serializer处理,之后就到了Partitions阶段,即分区分配计算阶段.在某些应用场景下,业务逻辑需要控制每条消息落到合适的分区中,有些情形下则只要根据默认的分配规则即可.在KafkaProducer计算分配时,首先根据的是ProducerRecord中的partition字段指定的序号计算分区.读者有可能刚睡醒,看到这个ProducerRecord似

spark内存管理器--MemoryManager源码解析

MemoryManager内存管理器 内存管理器可以说是spark内核中最重要的基础模块之一,shuffle时的排序,rdd缓存,展开内存,广播变量,Task运行结果的存储等等,凡是需要使用内存的地方都需要向内存管理器定额申请.我认为内存管理器的主要作用是为了尽可能减小内存溢出的同时提高内存利用率.旧版本的spark的内存管理是静态内存管理器StaticMemoryManager,而新版本(应该是从1.6之后吧,记不清了)则改成了统一内存管理器UnifiedMemoryManager,同一内存管

Spark自定义分区(Partitioner)

我们都知道Spark内部提供了HashPartitioner和RangePartitioner两种分区策略,这两种分区策略在很多情况下都适合我们的场景.但是有些情况下,Spark内部不能符合咱们的需求,这时候我们就可以自定义分区策略.为此,Spark提供了相应的接口,我们只需要扩展Partitioner抽象类,然后实现里面的三个方法: 01 package org.apache.spark 02 03 /** 04 * An object that defines how the element