F - Wormholes
题目链接:https://vjudge.net/contest/66569#problem/F
题目:
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ‘s farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively:
N,
M, and
W
Lines 2..
M+1 of each farm: Three space-separated numbers (
S,
E,
T) that describe, respectively: a bidirectional path between
S and
E that requires
T seconds to traverse. Two fields might be connected by more than one path.
Lines
M+2..
M+
W+1 of each farm: Three space-separated numbers (
S,
E,
T) that describe, respectively: A one way path from
S to
E that also moves the traveler back
T seconds.
Output
Lines 1..
F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle
1->2->3->1, arriving back at his starting location 1 second
before he leaves. He could start from anywhere on the cycle to
accomplish this.
题意:
农夫约翰在探索他的许多农场,发现了一些惊人的虫洞。虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的前达到目的地!他的N(1≤N≤500)个农场被编号为1..N,之间有M(1≤M≤2500)条路径,W(1≤W≤200)个虫洞。FJ作为一个狂热的时间旅行的爱好者,他要做到以下几点:开始在一个区域,通过一些路径和虫洞旅行,他要回到最开时出发的那个区域出发前的时间。也许他就能遇到自己了:)。为了帮助FJ找出这是否是可以或不可以,他会为你提供F个农场的完整的映射到(1≤F≤5)。所有的路径所花时间都不大于10000秒,所有的虫洞都不大于万秒的时间回溯。
Input
第1行:一个整数F表示接下来会有F个农场说明。 每个农场第一行:分别是三个空格隔开的整数:N,M和W 第2行到M+1行:三个空格分开的数字(S,E,T)描述,分别为:需要T秒走过S和E之间的双向路径。两个区域可能由一个以上的路径来连接。 第M +2到M+ W+1行:三个空格分开的数字(S,E,T)描述虫洞,描述单向路径,S到E且回溯T秒。
Output
F行,每行代表一个农场 每个农场单独的一行,” YES”表示能满足要求,”NO”表示不能满足要求。
思路:
套判断负环的模板即可,spfa算法如下:
// // Created by hanyu on 2019/7/19. // #include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxn=2e5+7; #define MAX 0x3f3f3f3f int book[maxn],cnt[maxn],d[maxn],head[maxn]; int n,m,w; int pos; struct Node{ int s; int e; int t; }node[maxn]; void add(int s,int e,int t) { node[pos].s=e; node[pos].e=t; node[pos].t=head[s]; head[s]=pos++; } bool spfa(int start) { queue<int>qu; qu.push(start); book[start]=1; d[start]=0; while(!qu.empty()) { int now=qu.front(); qu.pop(); book[now]=0; for(int i=head[now];i!=-1;i=node[i].t) { int ss=node[i].s; int ee=node[i].e; if(d[ss]>d[now]+ee) { d[ss]=d[now]+ee; if(!book[ss]) { qu.push(ss); book[ss]=1; cnt[ss]++; if(cnt[ss]>=n) return true;//判断负环 } } } } return false; } int main() { int T; scanf("%d",&T); while(T--) { memset(book,0,sizeof(book)); memset(cnt,0,sizeof(cnt)); memset(d,MAX,sizeof(d)); memset(head,-1,sizeof(head)); memset(node,0,sizeof(node)); scanf("%d%d%d",&n,&m,&w); int s,e,t; for(int i=1;i<=m;i++) { scanf("%d%d%d",&s,&e,&t); add(s,e,t); add(e,s,t); } for(int i=1;i<=w;i++) { scanf("%d%d%d",&s,&e,&t); add(s,e,-t); } cnt[1]=1; pos=0; if(spfa(1)) printf("YES\n"); else printf("NO\n"); } return 0; }
原文地址:https://www.cnblogs.com/Vampire6/p/11216351.html