自适应阈值化操作:adaptiveThreshold()函数

在图像阈值化操作中,更关注的是从二值化图像中,分离目标区域和背景区域,但是仅仅通过设定固定阈值很难达到理想的分割效果。而自适应阈值,则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值。这样做的好处:

1. 每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的。

2. 亮度较高的图像区域的二值化阈值通常会较高,而亮度低的图像区域的二值化阈值则会相适应的变小。

3. 不同亮度、对比度、纹理的局部图像区域将会拥有相对应的局部二值化阈值。

函数原型

1.    void adaptiveThreshold(InputArray src, OutputArray dst,
2.                           double maxValue, int adaptiveMethod,
3.                           int thresholdType, int bolckSize, double C)  

参数说明

参数1:InputArray类型的src,输入图像,填单通道,单8位浮点类型Mat即可。
参数2:函数运算后的结果存放在这。即为输出图像(与输入图像同样的尺寸和类型)。
参数3:预设满足条件的最大值。
参数4:指定自适应阈值算法。可选择ADAPTIVE_THRESH_MEAN_C 或 ADAPTIVE_THRESH_GAUSSIAN_C两种。(具体见下面的解释)。
参数5:指定阈值类型。可选择THRESH_BINARY或者THRESH_BINARY_INV两种。(即二进制阈值或反二进制阈值)。
参数6:表示邻域块大小,用来计算区域阈值,一般选择为3、5、7......等。
参数7:参数C表示与算法有关的参数,它是一个从均值或加权均值提取的常数,可以是负数。(具体见下面的解释)。
//--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

对参数4与参数7内容的解释:

自适应阈值化计算大概过程是为每一个象素点单独计算的阈值,即每个像素点的阈值都是不同的,就是将该像素点周围B*B区域内的像素加权平均,然后减去一个常数C,从而得到该点的阈值。B由参数6指定,常数C由参数7指定。

ADAPTIVE_THRESH_MEAN_C,为局部邻域块的平均值,该算法是先求出块中的均值,再减去常熟C。

ADAPTIVE_THRESH_GAUSSIAN_C,为局部邻域块的高斯加权和。该算法是在区域中(x, y)周围的像素根据高斯函数按照他们离中心点的距离进行加权计算,再减去常数C。

举个例子:如果使用平均值方法,平均值mean为190,差值delta(即常数C)为30。那么灰度小于160的像素为0,大于等于160的像素为255。如下图:

如果是反向二值化,如下图:

delta(常数C)选择负值也是可以的。

代码演示

/*
    自适应阈值:adaptiveThreshold()函数
*/

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace std;
using namespace cv;

int main()
{
    //------------【1】读取源图像并检查图像是否读取成功------------
    Mat srcImage = imread("D:\\OutPutResult\\ImageTest\\build.jpg");
    if (!srcImage.data)
    {
        cout << "读取图片错误,请重新输入正确路径!\n";
        system("pause");
        return -1;
    }
    imshow("【源图像】", srcImage);
    //------------【2】灰度转换------------
    Mat srcGray;
    cvtColor(srcImage, srcGray, CV_RGB2GRAY);
    imshow("【灰度图】", srcGray);
    //------------【3】初始化相关变量---------------
    Mat dstImage;        //初始化自适应阈值参数
    const int maxVal = 255;
    int blockSize = 3;    //取值3、5、7....等
    int constValue = 10;
    int adaptiveMethod = 0;
    int thresholdType = 1;
    /*
        自适应阈值算法
        0:ADAPTIVE_THRESH_MEAN_C
        1:ADAPTIVE_THRESH_GAUSSIAN_C
        --------------------------------------
        阈值类型
        0:THRESH_BINARY
        1:THRESH_BINARY_INV
    */
    //---------------【4】图像自适应阈值操作-------------------------
    adaptiveThreshold(srcGray, dstImage, maxVal, adaptiveMethod, thresholdType, blockSize, constValue);

    imshow("【自适应阈值】", dstImage);
    waitKey(0);
    return 0;
}

显示结果

可以发现自适应阈值能很好的观测到边缘信息。阈值的选取是算法自动完成的,很方便。

滤波处理

另外,做不做滤波处理等对图像分割影响也比较大。

1. adaptiveThreshold分割

    Mat img=imread("D:/ImageTest/sudoku.png",CV_LOAD_IMAGE_COLOR);
    Mat dst1;
    Mat dst2;
    Mat dst3;
    cv::cvtColor(img,img,COLOR_RGB2GRAY);//进行,灰度处理
    medianBlur(img,img,5);//中值滤波
    threshold(img,dst1, 127, 255, THRESH_BINARY);//阈值分割
    adaptiveThreshold(img,dst2,255,ADAPTIVE_THRESH_MEAN_C,THRESH_BINARY,11,2);//自动阈值分割,邻域均值
    adaptiveThreshold(img,dst3,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY,11,2);//自动阈值分割,高斯邻域
    //ADAPTIVE_THRESH_MEAN_C : threshold value is the mean of neighbourhood area
    //ADAPTIVE_THRESH_GAUSSIAN_C : threshold value is the weighted sum of neighbourhood values where weights are a gaussian window.
    imshow("dst1", dst1);
    imshow("dst2", dst2);
    imshow("dst3", dst3);
    imshow("img", img);
    waitKey(0);

效果对比,很明显加入邻域权重后处理更理想:

2. 加入滤波处理的最大类间方差分割

Mat img=imread("D:/ImageTest/pic2.png",CV_LOAD_IMAGE_COLOR);
    Mat dst1;
    Mat dst2;
    Mat dst3;
    cv::cvtColor(img,img,COLOR_RGB2GRAY);//进行,灰度处理
    //    medianBlur(img,img,5);
    threshold(img,dst1, 127, 255, THRESH_BINARY);
    threshold(img,dst2,0, 255, THRESH_OTSU);//最大类间方差法分割 Otsu algorithm to choose the optimal threshold value
    Mat img2=img.clone();
    GaussianBlur(img2,img2,Size(5,5),0);//高斯滤波去除小噪点
    threshold(img2,dst3, 0, 255, THRESH_OTSU);
    imshow("BINARY dst1", dst1);
    imshow("OTSU dst2", dst2);
    imshow("GaussianBlur OTSU dst3", dst3);
    imshow("original img", img);
    waitKey(0);

效果如下,显然不滤波和滤波差别明显:

参考文章:https://blog.csdn.net/sinat_36264666/article/details/77586964

https://blog.csdn.net/abcvincent/article/details/78822191

原文地址:https://www.cnblogs.com/GaloisY/p/11037350.html

时间: 2024-10-11 03:12:17

自适应阈值化操作:adaptiveThreshold()函数的相关文章

3.1.3自适应阈值化

////Source Code:https://blog.csdn.net/gone_huilin/article/details/53222764 #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" int main() { // 图像读取及判断 cv::Mat srcImage = cv::imread("D:\\0604.png"); i

图像阈值化-threshold、adaptivethreshold

在图像处理中阈值化操作,从一副图像中利用阈值分割出我们需要的物体部分(当然这里的物体可以是一部分或者整体).这样的图像分割方法是基于图像中物体与背景之间的灰度差异,而且此分割属于像素级的分割.opencv的二值化操作函数,如果你是一位经验丰富的专业人员,可以发现阈值化操作有很多小技巧,不只是单单调用二值化操作函数,就完成阈值化操作,往往还是结合形态学处理. 阈值化操作在图像处理中是一种常用的算法,比如图像的二值化就是一种最常见的一种阈值化操作.opencv2和opencv3中提供了直接阈值化操作

OpenCV实现图像阈值化

纯粹阅读,请移步OpenCV实现图像阈值化 效果图 源码 KqwOpenCVBlurDemo 阈值化是一种将我们想要在图像中分析的区域分割出来的方法. 我们把每个像素值都与一个预设的阈值做比较,再根据比较的结果调整像素值. 类似这样 Imgproc.threshold(src,src,100,255,Imgproc.THRESH_BINARY); 其中100是阈值,255是最大值(纯白色的值). 常量 名称 常量 二值阈值化 Imgproc.THRESH_BINARY 阈值化到零 Imgproc

opencv2函数学习之threshold:实现图像阈值化

在opencv2中,threshold函数可以进行阈值化操作. double threshold( const Mat& src, Mat& dst, double thresh,double maxVal, int thresholdType ); 参数: src:原图像. dst:结果图像. thresh:当前阈值. maxVal:最大阈值,一般为255. thresholdType:阈值类型,主要有下面几种: enum { THRESH_BINARY=0, THRESH_BINARY

Opencv3编程入门笔记(4)腐蚀、膨胀、开闭运算、漫水填充、金字塔、阈值化、霍夫变换

19      腐蚀erode.膨胀dilate 腐蚀和膨胀是针对图像中的白色部分(高亮部分)而言的,不是黑色的.除了输入输出图像外,还需传入模板算子element,opencv中有三种可以选择:矩形MORPH_RECT,交叉形MORPH_CROSS,椭圆形MORPH_ELLIPSE.Matlab中会有更多一点的模板. 例如: Mat element = getStructuringElement(MORPH_RECT,Size(15,15)); erode(srcImage,dstImage,

阈值化

一.固定阈值化Threshold()函数 double threshold( InputArray src, OutputArray dst, double thresh, double maxval, int type ); 二.自适应阈值操作:adaptiveThreshold()函数 void adaptiveThreshold( InputArray src, OutputArray dst, double maxValue, int adaptiveMethod, int thresh

OpenCV阈值化处理

图像的阈值化就是利用图像像素点分布规律,设定阈值进行像素点分割,进而得到图像的二值图像.图像阈值化操作有多种方法,常用方法有经典的OTSU.固定阈值.自适应阈值.双阈值及半阈值化操作.这里对各种阈值化操作进行一个总结. OTSU阈值化 在阈值化处理中,常用的算法就是OTSU.发明人是Nobuyuki Ostu.这种二值化操作阈值的选取非常重要,阈值选取的不合适,可能得到的结果就毫无用处.简单的说,这种算法假设衣服图像由前景色和背景色组成.通过统计学的方法来选取一个阈值,使这个阈值可以将前景色和背

openCV—Python(10)—— 图像阈值化处理

一.函数简介 1.threshold-图像简单阈值化处理 函数原型:threshold(src, thresh, maxval, type, dst=None) src:图像矩阵 thresh:阈值 maxVal:像素最大值 type:阈值化类型 2.adaptiveThreshold-图像自适应阈值化处理 函数原型:adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C, dst=None) sr

第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用

反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用于信道均衡.图像恢复.语音识别.地震学.无损探伤等未知输入估计和过程辨识方面的问题. 在神经网络的研究中,反卷积更多的是充当可视化的作用,对于一个复杂的深度卷积网络,通过每层若干个卷积核的变换,我们无法知道每个卷积核关注的是什么,变换后的特征是什么样子.通过反卷积的还原,可以对这些问题有个清晰的可视