HDU-2829 Lawrence (DP+四边形不等式优化)

题目大意:有n个敌方军火库呈直线排列,每个军火库有一个值vi,并且任意相邻的两个库之间都有通道相连。对于任意一条连起来的军火库链,它对我方的威胁可以用函数w(i,j)表示为:w(i,j)=vi*sum(i+1,j)+w(i+1,j)              i<j;

             w(i,j)=0                     i=j;

现在,你有m个炸弹,每颗可以炸掉相邻的两个库之间的通道,求最终的总的最小威胁值。

题目分析:定义状态dp(i,j)表示用 i 颗炸弹使前 j 个库房脱离链条后前 j 个库房产生的最小威胁值,则状态转移方程为:dp(i,j)=min(dp(i-1,k-1)+w(k,j))。很显然,w(i,j)满足凸四边形不等式和关于包含关系单调,所以dp(i,j)也满足凸四边形不等式,可以限制k的取值范围来减少状态的处理,达到优化效果。

ps:可能是我的代码写得太烂了吧!跑了400+ms!!!别人都用了不到100ms!

代码如下:

# include<iostream>
# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std;
# define LL long long

const LL INF=0xfffffffffffffff;
const int N=1005;

int n,m;
LL dp[N][N];
int K[N][N];
LL w[N][N];
int s[N],a[N];

void init()
{
    s[0]=0;
    for(int i=1;i<=n;++i){
        scanf("%lld",a+i);
        s[i]=a[i]+s[i-1];
    }
    for(int j=n;j>=1;--j){
        for(int i=1;i<=n;++i)
            dp[i][j]=INF;
        w[j][j]=0;
        for(int i=j-1;i>=1;--i)
            w[i][j]=a[i]*(s[j]-s[i])+w[i+1][j];
    }
}

void solve()
{
    if(m==0){
        printf("%lld\n",w[1][n]);
        return ;
    }
    for(int i=0;i<n;++i){
        dp[0][i]=INF;
        dp[i][i]=0;
        K[i][i]=i;
    }
    for(int l=2;l<=n;++l){
        for(int i=1;i+l-1<=n;++i){
            int j=i+l-1;
            dp[i][j]=INF;
            for(int k=K[i][j-1];k<=K[i+1][j];++k){
                if(dp[i][j]>dp[i-1][k-1]+w[k][j]){
                    dp[i][j]=dp[i-1][k-1]+w[k][j];
                    K[i][j]=k;
                }
            }
        }
    }
    LL ans=INF;
    for(int i=1;i<n;++i)
        ans=min(ans,dp[m][i]+w[i+1][n]);
    printf("%lld\n",ans);
}

int main()
{
    while(scanf("%d%d",&n,&m)&&(n+m))
    {
        init();
        solve();
    }
    return 0;
}

  

时间: 2024-10-12 02:54:47

HDU-2829 Lawrence (DP+四边形不等式优化)的相关文章

hdu 3480 dp 四边形不等式优化

http://acm.hdu.edu.cn/showproblem.php?pid=3480 给出一个数字集合 S,大小为 n,要求把这个集合分成m个子集,每分出一个子集的费用是子集中的 (max-min)^2,求最小费用. 开始的dp转移很容易想到. 首先对集合从小到大排序,dp[i][j] 表示前i个元素被分成j个子集的最小费用.然后枚举最后一个子集. dp[i][j] = min{dp[k-1][j-1] + cost(k, i)}; 这个转移明显是过不去的,n<10000 m<5000

HDU 3516 DP 四边形不等式优化 Tree Construction

设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1].x - p[i].x } 然后用四边形不等式优化之.. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <

[51nod 1022] 石子归并v2 [dp+四边形不等式优化]

题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不了的,需要优化 注意:dp的转移如下:dp[i][j]=min(dp[i][k]+dp[k+1][j]+sum(i,j)),其中sum(i,j)表示i到j的价值和,满足区间单调性 因此dp[i][j]也满足区间单调性,可以用四边形不等式优化 我们令s[i][j]等于让dp[i][j]取最小值的那个K

区间dp+四边形不等式优化

区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n天卖掉i..j货物的收益 dp[begin][end]=max(dp[begin][end-1]+value[end]*(n-len+1) ,dp[begin+1][end]+value[begin]*(n-len+1)); 注意理解 代码 递推形式 #include<bits/stdc++.h>

hdu 2829 dp+四边形不等式优化

用w[i][j]表示i到j之间没有边毁掉的费用. 有一种很好证明w[i][j]是否满足四边形不等式的条件. 若(w[i+1][j]-w[i][j])是关于j的减函数,就是满足条件的.可以证明这里的w[i][j]是瞒住条件的. #include <set> #include <map> #include <queue> #include <stack> #include <cmath> #include <string> #includ

hdu 3506 Monkey Party 区间dp + 四边形不等式优化

http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_nTDz7pP9xCeHnd062vNwVT830z4_aQoZxsCcRtac6CLzbPYLNImi5QAjF2k9ydjqdFf7wlh29GJffeyG8rUh-Y1c3xWRi0AKFNKSrtj3ZY7mtdp9n5W7M6BBjoINA-DdplWWEPSK#1 dp[i][j]表示第

HDU 3506 DP 四边形不等式优化 Monkey Party

环形石子合并问题. 有一种方法是取模,而如果空间允许的话(或者滚动数组),可以把长度为n个换拓展成长为2n-1的直线. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 6 using namespace std; 7 8 const int maxn = 2000 + 10; 9 const int INF = 0x3f3f3f3f

HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程很容易想出来,dp[i][j] 表示前 j 个数分成 i 组.但是复杂度是三次方的,肯定会超时,就要对其进行优化. 有两种方式,一种是斜率对其进行优化,是一个很简单的斜率优化 dp[i][j] = min{dp[i-1][k] - w[k] + sum[k]*sum[k] - sum[k]*sum[

HDU 2829 Lawrence(动态规划-四边形不等式)

Lawrence Problem Description T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary target