Android Zygote源码分析

目录

  • 目录
  • 概述
  • zygote分析
  • AppRuntime分析
  • 创建虚拟机startVm
  • 注册JNI函数startReg
  • 进入JAVA世界
    • 建立IPC通信服务端registerZygoteSocket
    • 预加载类和资源preload
    • 启动system_server
    • 有求必应之等待请求runSelectLoop

概述

在Android系统中,所有的应用程序进程,以及用来运行系统关键服务的System进程都是由zygote进程负责创建的。因此,我们将它称为进程孵化器。zygote进程是通过复制自身的方式来创建System进程和应用程序进程的。由于zygote进程在启动时会在内部创建一个虚拟机实例,因此,通过复制zygote进程而得到的System进程和应用程序进程可以快速地在内部获得一个虚拟机实例拷贝。

zygote进程在启动完成之后,会马上将System进程启动起来,以便它可以将系统的关键服务启动起来。下面我们将介绍zygote进程的启动脚本,然后分析它和System进程的启动过程。


zygote分析

zygote进程的启动脚本如下:

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
    class main
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd

在我之前的一篇博客中已经分析了init进程是如何启动service服务了,需要了解的同学可以参考这篇文章:Android init进程——解析配置文件

通过zygote服务的启动脚本,我们可以知道,zygote进程的实际是二进制文件app_process的调用,我们就从这个应用程序的main函数入手去分析一下zygote进程的启动过程,源码如下(/frameworks/base/cmds/app_process/app_main.cpp):

/**
 * 将-Xzygote加入到JavaVMOption中,返回/system/bin参数指向的下标
 */
int AndroidRuntime::addVmArguments(int argc, const char* const argv[])
{
    int i;

    for (i = 0; i < argc; i ++) {
        if (argv[i][0] != ‘-‘) {
            return i;
        }
        if (argv[i][1] == ‘-‘ && argv[i][2] == 0) {
            return i + 1;
        }

        JavaVMOption opt;
        memset(&opt, 0, sizeof(opt));
        opt.optionString = (char*)argv[i];
        mOptions.add(opt);
    }
    return i;
}

int main(int argc, char* const argv[])
{
    // zygote call parameters
    // /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server

    // These are global variables in ProcessState.cpp
    mArgC = argc;
    mArgV = argv;

    mArgLen = 0;
    for (int i = 0; i < argc; i ++) {
        mArgLen += strlen(argv[i]) + 1;
    }
    // 去除末尾的空格
    mArgLen--;

    AppRuntime runtime;
    const char* argv0 = argv[0];

    // Process command line arguments
    // ignore argv[0]
    argc --;
    argv ++;

    // Everything up tp ‘--‘ or first non ‘-‘ arg goes to the vm
    int i = runtime.addVmArguments(argc, argv);

    // Parse runtime arguments. Stop at first unrecognized option.
    bool zygote = false;
    bool startSystemServer = false;
    bool application = false;
    const char* parentDir = NULL;
    const char* niceName = NULL;
    const char* className = NULL;
    while (i < argc) {
        const char* arg = argv[i ++];
        if (!parentDir) {
            parentDir = arg;
        } else if (strcmp(arg, "--zygote") == 0) {
            zygote = true;
            niceName = "zygote";
        } else if (strcmp(arg, "--start-system-server") == 0) {
            startSystemServer = true;
        } else if (strcmp(arg, "--application") == 0) {
            application = true;
        } else if (strncmp(arg, "--nice-name=", 12)) {
            niceName = arg + 12;
        } else {
            className = arg;
            break;
        }
    }

    if (niceName && *niceName) {
        setArgv0(argv0, niceName);
        set_process_name(niceName);
    }

    runtime.mParentDir = parentDir;

    if (zygote) {
        // 进入到AppRuntime的start函数
        runtime.start("com.android.internal.os.ZygoteInit",
            startSystemServer? "start-system-server" : "");
    } else if (className) {
        runtime.mClassName = className;
        runtime.mArgc = argc - i;
        runtime.mArgv = argv + i;
        runtime.start("com.android.internal.os.RuntimeInit", application ? "application" : "tool");
    } else {
        fprintf("stderr", "Error: no class name or --zygote supplied.\n");
        app_usage();
        LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied");
        return 10;
    }
}

在zygote的main函数中,通过AppRuntime runtime代码创建了一个AppRuntime对象runtime,接下来Zygote进程就是通过它来进一步启动的。

init.rc中关于启动zygote命令中包含了–zygote参数,所以在if(strcmp(arg, “–zygote”) == 0)判断的时候,会将niceName赋值为”zygote”,然后通过set_process_name(niceName)函数将当前进程的名称设置为zygote。这也是为什么调用的脚本为/system/bin/app_process,而进程名为zygote的原因。set_process_name函数的源码如下(/system/core/libcutils/process_name.c):

static const char* process_name = "unknown";
void set_process_name(const char* new_name)
{
    if (new_name == NULL) {
        return;
    }

    int len = strlen(new_name);
    char* copy = (char*)malloc(len + 1);
    strcpy(copy, new_name);
    process_name = (const char*) copy;
}

从init.rc文件中关于zygote进程的配置参数可知,Zygote进程传递给应用程序app_process的启动参数arg还包含一个”–start-system-server”选项。因此,在调用AppRuntime对象runtime的成员函数start时,第二个参数为”start-system-server”,表示zygote进程启动完成之后,需要将system进程启动起来。


AppRuntime分析

AppRuntime类的成员函数start是从父类AndroidRuntime继承下来的,因此,接下来我们就继续分析AndroidRuntime类的成员函数start的实现,函数源码位置:/frameworks/base/core/jni/AndroidRuntime.cpp:

char* AndroidRuntime::toSlashClassName(const char* className)
{
    char* result = strdup(className);
    for (char* cp = result; *cp != ‘\0‘; cp ++) {
        if (*cp == ‘.‘) {
            *cp = ‘/‘;
        }
    }

    return result;
}

/**
 * Start the Android runtime. This involves starting the virtual machine
 * and calling the "static void main(String[] args)" method int the class
 * named by "className".
 *
 * 这两个参数的值分别为:
 * const char* className = "com.android.internal.os.ZygoteInit";
 * const char* options = "start-system-server";
 */
void AndroidRuntime::start(const char* className, const char* options)
{
    ALOGD("\n>>>>> AndroidRuntime START %s <<<<<<\n",
        className != NULL ? className : "(unknown)");

    /**
     * ‘startSystemServer == true‘ means runtime is obsolete and not run from
     * init.rc anymore, so we print out the boot start event here.
     */
    if (strcmp(options, "start-system-server") == 0) {
        const int LOG_BOOT_PROGRESS_START = 3000;
        LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START, ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
    }

    // 设置ANDROID_ROOT环境变量
    const char* rootDir = getenv("ANDROID_ROOT");
    if (rootDir == NULL) {
        rootDir = "/system";
        if (!hasDir("/system")) {
            LOG_FATAL("No root directory specified, and /android dose not exist.");
            return;
        }
        setenv("ANDROID_ROOT", rootDir, 1);
    }

    JniInvocation jni_invocation;
    jni_invocation.Init(NULL);
    JNIEnv* env;
    // 1. 创建虚拟机
    if (startVm(&mJavaVM, &env) != 0) {
        return;
    }
    onVmCreated(env);

    // 2. 注册JNI函数
    if (startReg(env) < 0) {
        ALOGE("Unable to register all android natives\n");
        return;
    }

    jclass stringClass;
    jobjectArray strArray;
    jstring classNameStr;
    jstring optionsStr;

    stringClass = env->FindClass("java/lang/String");
    assert(stringClass != NULL);
    // 创建一个有两个元素的String数组,用Java代码表示为:String[] strArray = new String[2];
    strArray = env->NewObjectArray(2, stringClass, NULL);
    assert(strArray != NULL);
    classNameStr = env->NewStringUTF(className);
    assert(classNameStr != NULL);
    // 设置第一个元素为"com.android.internal.os.ZygoteInit"
    env->SetObjectArrayElement(strArray, 0, classNameStr);
    optionsStr = env->NewStringUTF(options);
    // 设置第二个元素为"start-system-server"
    env->SetObjectArrayElement(strArray, 1, optionsStr);

    // 将字符串"com.android.internal.os.ZygoteInit"转换为"com/android/internal/os/ZygoteInit"
    char* slashClassName = toSlashClassName(className);
    jclass startClass = env->FindClass(slashClassName);
    if (startClass == NULL) {
        ALOGE("JavaVM unable to locate class ‘%s‘\n", slashClassName);
    } else {
        jmethodID startMeth = env->GetStaticMethodID(startClass, "main", "([Ljava/lang/String;)V");
        if (startMeth == NULL) {
            ALOGE("JavaVM unable to find main() in ‘%s\n‘", className);
        } else {
            // 3.
            // 通过JNI调用java函数,注意调用的是main函数,所属的类是"com.android.internal.os.ZygoteInit".
            // 传递的参数是"com.android.internal.os.ZygoteInit true"
            env->CallStaticVoidMethod(startClass, startMeth, strArray);
        }
    }
    free(slashClassName);

    ALOGD("Shutting down VM\n");
    if (mJavaVM->DetachCurrentThread() != JNI_OK) {
        ALOGW("Warning: unable to detach main thread\n");
    }
    if (mJavaVM->DestoryJavaVM() != 0) {
        ALOGW("Warning: VM did not shut down cleanly\n");
    }
}

上述代码有几处关键点,分别是:

  1. 创建虚拟机。
  2. 注册JNI函数。
  3. 进入Java世界。

接下来,我们分别分析这三个关键点。


创建虚拟机——startVm

startVm并没有特别之处,就是调用JNI的虚拟机创建函数,但是创建虚拟机时的一些参数却是在startVm中确定的,其源码如下:

#define PROPERTY_VALUE_MAX 92
/**
 * Start the Dalvik Virtual Machine.
 *
 * Various arguments, most determined by system properties, are passed in.
 * The "mOptions" vector is updated.
 *
 * Returns 0 on success.
 */
int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIENV** pEnv)
{
    int result = -1;
    JavaVMInitArgs initArgs;
    JavaVMOption opt;
    char propBuf[PROPERTY_VALUE_MAX];
    char stackTraceFileBuf[PROPERTY_VALUE_MAX];
    char dexoptFlagsBuf[PROPERTY_VALUE_MAX];
    char enableAssertBuf[sizeof("-ea:")-1 + PROPERTY_VALUE_MAX];
    char jniOptsBuf[sizeof("-Xjniopts:")-1 + PROPERTY_VALUE_MAX];
    char heapstartsizeOptsBuf[sizeof("-Xms")-1 + PROPERTY_VALUE_MAX];
    char heapsizeOptsBuf[sizeof("-Xms")-1 + PROPERTY_VALUE_MAX];
    char heapgrowthlimitOptsBuf[sizeof("-XX:HeapGrowthLimit=")-1 + PROPERTY_VALUE_MAX];
    char heapminfreeOptsBuf[sizeof("-XX:HeapMinFree=")-1 + PROPERTY_VALUE_MAX];
    char heapmaxfreeOptsBuf[sizeof("-XX:HeapMaxFree=")-1 + PROPERTY_VALUE_MAX];
    char heaptargetutilizationOptsBuf[sizeof("-XX:HeapTargetUtilization=")-1 + PROPERTY_VALUE_MAX];
    char jitcodecachesizeOptsBuf[sizeof("-Xjitcodecachesize:")-1 + PROPERTY_VALUE_MAX];
    char extraOptsBuf[PROPERTY_VALUE_MAX];
    char* stackTraceFile = NULL;
    bool checkJni = false;
    bool checkDexSum = false;
    bool logStdio = false;
    enum {
        KEMDefault,
        KEMIntPortable,
        KEMIntFast,
        KEMJitCompiler,
    } executionMode = KEMDefault;

    /**
     * 这段代码是用了设置JNI_check选项的。JNI_check指的是Native层调用JNI函数时,系统所做的一些检查动作。
     * 这个选项虽然能增加可靠性,但是还有一些副作用:
     * 1. 因为检查工作比较耗时,所以会影响系统运行速度。
     * 2. 有些检查工作比较耗时,一旦出错,整个进程会abort。
     * 所以,JNI_check选项一般只在eng版本设置。
     */
    property_get("dalvik.vm.checkjni", propBuf, "");
    if (strcmp(propBuf, "true") == 0) {
        checkJni = true;
    } else if (strcmp(propBuf, "false") != 0) {
        property_get("ro.kernel.android.checkjni", propBuf, "");
        if (propBuf[0] == ‘1‘) {
            checkJni = true;
        }
    }

    property_get("dalvik.vm.execution-mode", propBuf, "");
    if (strcmp(propBuf, "int:portable") == 0) {
        executionMode = KEMIntPortable;
    } else if (strcmp(propBuf, "int:fast") == 0) {
        executionMode = KEMIntFast;
    } else if (strcmp(propBuf, "int:jit") == 0) {
        executionMode = KEMJitCompiler;
    }

    // ... 省略大部分参数设置

    /**
     * 设置虚拟机的heapsize,默认为16m。绝大多数厂商都会在build.prop文件里修改这个属性,一般是256m。
     * heapsize不能设置得过小,否则在操作大尺寸的图片时无法分配所需的内存。
     */
    strcpy(heapsizeOptsBuf, "-Xmx");
    property_get("dalvik.vm.heapsize", heapsizeOptsBuf+4, "16m");
    opt.optionString = heapsizeOptsBuf;
    mOptions.add(opt);

    // ......

    if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
        ALOGE("JNI_CreateJavaVM failed\n");
        goto bail;
    }

    result = 0;

bail:
    free(stackTraceFile);
    return result;
}

更多虚拟机参数的设置,我这里就不做特殊说明了,大家感兴趣可以自行google。(ps:因为我不太懂虚拟机这一块…)


注册JNI函数——startReg

上面讲了如何创建虚拟机,接下来需要给这个虚拟机注册一些JNI函数。正是因为后续的Java世界用到的一些函数是采用native方式实现的,所以才必须提前注册这些函数。

接下来,我们来看一下startReg函数的源码实现:

int AndroidRuntime::startReg(JNIEnv* env)
{
    // 设置Thread类的线程创建函数为javaCreateThreadEtc
    androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);

    ALOGV("--- registering native functions ---\n");

    env->PushLocalFrame(200);

    if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
        env->PopLocalFrame(NULL);
        return -1;
    }
    env->PopLocalFrame(NULL);

    return 0;
}

关键是需要注册JNI函数,具体实现是由register_jni_procs函数实现的,我们来看一下这个函数的具体实现(/frameworks/base/core/jni/AndroidRuntime.cpp):

static int register_jni_procs(const RegJNIRec array[], size_T count, JNIEnv* env)
{
    for (size_t i = 0; i < count; i ++) {
        if (array[i].mProc(env) < 0) {
#ifndef NDEBUG
            ALOGD("------!!! %s failed to load\n", array[i].mName);
#endif
            return -1;
        }
    }

    return 0;
}

通过源码,我们可以看到,register_jni_procs只是对array数组的mProc函数的封装,而array数组指向的是gRegJNI数组,我们来看一下这个数组的实现:

static const RegJNIRec gRegJNI[] = {
    REG_JNI(register_android_debug_JNITest),
    REG_JNI(register_com_android_internal_os_RuntimeInit),
    REG_JNI(register_android_os_SystemClock),
    REG_JNI(register_android_util_EventLog),
    REG_JNI(register_android_util_Log),
    REG_JNI(register_android_util_FloatMath),
    REG_JNI(register_android_text_format_Time),
    REG_JNI(register_android_content_AssetManager),
    REG_JNI(register_android_content_StringBlock),
    REG_JNI(register_android_content_XmlBlock),
    REG_JNI(register_android_emoji_EmojiFactory),
    REG_JNI(register_android_text_AndroidCharacter),
    REG_JNI(register_android_text_AndroidBidi),
    REG_JNI(register_android_view_InputDevice),
    REG_JNI(register_android_view_KeyCharacterMap),
    REG_JNI(register_android_os_Process),
    REG_JNI(register_android_os_SystemProperties),
    REG_JNI(register_android_os_Binder),
    REG_JNI(register_android_os_Parcel),
    REG_JNI(register_android_view_DisplayEventReceiver),
    REG_JNI(register_android_nio_utils),
    REG_JNI(register_android_graphics_Graphics),
    REG_JNI(register_android_view_GraphicBuffer),
    REG_JNI(register_android_view_GLES20DisplayList),
    REG_JNI(register_android_view_GLES20Canvas),
    REG_JNI(register_android_view_HardwareRenderer),
    REG_JNI(register_android_view_Surface),
    REG_JNI(register_android_view_SurfaceControl),
    REG_JNI(register_android_view_SurfaceSession),
    REG_JNI(register_android_view_TextureView),
    REG_JNI(register_com_google_android_gles_jni_EGLImpl),
    REG_JNI(register_com_google_android_gles_jni_GLImpl),
    REG_JNI(register_android_opengl_jni_EGL14),
    REG_JNI(register_android_opengl_jni_EGLExt),
    REG_JNI(register_android_opengl_jni_GLES10),
    REG_JNI(register_android_opengl_jni_GLES10Ext),
    REG_JNI(register_android_opengl_jni_GLES11),
    REG_JNI(register_android_opengl_jni_GLES11Ext),
    REG_JNI(register_android_opengl_jni_GLES20),
    REG_JNI(register_android_opengl_jni_GLES30),

    REG_JNI(register_android_graphics_Bitmap),
    REG_JNI(register_android_graphics_BitmapFactory),
    REG_JNI(register_android_graphics_BitmapRegionDecoder),
    REG_JNI(register_android_graphics_Camera),
    REG_JNI(register_android_graphics_CreateJavaOutputStreamAdaptor),
    REG_JNI(register_android_graphics_Canvas),
    REG_JNI(register_android_graphics_ColorFilter),
    REG_JNI(register_android_graphics_DrawFilter),
    REG_JNI(register_android_graphics_Interpolator),
    REG_JNI(register_android_graphics_LayerRasterizer),
    REG_JNI(register_android_graphics_MaskFilter),
    REG_JNI(register_android_graphics_Matrix),
    REG_JNI(register_android_graphics_Movie),
    REG_JNI(register_android_graphics_NinePatch),
    REG_JNI(register_android_graphics_Paint),
    REG_JNI(register_android_graphics_Path),
    REG_JNI(register_android_graphics_PathMeasure),
    REG_JNI(register_android_graphics_PathEffect),
    REG_JNI(register_android_graphics_Picture),
    REG_JNI(register_android_graphics_PorterDuff),
    REG_JNI(register_android_graphics_Rasterizer),
    REG_JNI(register_android_graphics_Region),
    REG_JNI(register_android_graphics_Shader),
    REG_JNI(register_android_graphics_SurfaceTexture),
    REG_JNI(register_android_graphics_Typeface),
    REG_JNI(register_android_graphics_Xfermode),
    REG_JNI(register_android_graphics_YuvImage),
    REG_JNI(register_android_graphics_pdf_PdfDocument),

    REG_JNI(register_android_database_CursorWindow),
    REG_JNI(register_android_database_SQLiteConnection),
    REG_JNI(register_android_database_SQLiteGlobal),
    REG_JNI(register_android_database_SQLiteDebug),
    REG_JNI(register_android_os_Debug),
    REG_JNI(register_android_os_FileObserver),
    REG_JNI(register_android_os_MessageQueue),
    REG_JNI(register_android_os_SELinux),
    REG_JNI(register_android_os_Trace),
    REG_JNI(register_android_os_UEventObserver),
    REG_JNI(register_android_net_LocalSocketImpl),
    REG_JNI(register_android_net_NetworkUtils),
    REG_JNI(register_android_net_TrafficStats),
    REG_JNI(register_android_net_wifi_WifiNative),
    REG_JNI(register_android_os_MemoryFile),
    REG_JNI(register_com_android_internal_os_ZygoteInit),
    REG_JNI(register_android_hardware_Camera),
    REG_JNI(register_android_hardware_camera2_CameraMetadata),
    REG_JNI(register_android_hardware_SensorManager),
    REG_JNI(register_android_hardware_SerialPort),
    REG_JNI(register_android_hardware_UsbDevice),
    REG_JNI(register_android_hardware_UsbDeviceConnection),
    REG_JNI(register_android_hardware_UsbRequest),
    REG_JNI(register_android_media_AudioRecord),
    REG_JNI(register_android_media_AudioSystem),
    REG_JNI(register_android_media_AudioTrack),
    REG_JNI(register_android_media_JetPlayer),
    REG_JNI(register_android_media_RemoteDisplay),
    REG_JNI(register_android_media_ToneGenerator),

    REG_JNI(register_android_opengl_classes),
    REG_JNI(register_android_server_NetworkManagementSocketTagger),
    REG_JNI(register_android_server_Watchdog),
    REG_JNI(register_android_ddm_DdmHandleNativeHeap),
    REG_JNI(register_android_backup_BackupDataInput),
    REG_JNI(register_android_backup_BackupDataOutput),
    REG_JNI(register_android_backup_FileBackupHelperBase),
    REG_JNI(register_android_backup_BackupHelperDispatcher),
    REG_JNI(register_android_app_backup_FullBackup),
    REG_JNI(register_android_app_ActivityThread),
    REG_JNI(register_android_app_NativeActivity),
    REG_JNI(register_android_view_InputChannel),
    REG_JNI(register_android_view_InputEventReceiver),
    REG_JNI(register_android_view_InputEventSender),
    REG_JNI(register_android_view_InputQueue),
    REG_JNI(register_android_view_KeyEvent),
    REG_JNI(register_android_view_MotionEvent),
    REG_JNI(register_android_view_PointerIcon),
    REG_JNI(register_android_view_VelocityTracker),

    REG_JNI(register_android_content_res_ObbScanner),
    REG_JNI(register_android_content_res_Configuration),

    REG_JNI(register_android_animation_PropertyValuesHolder),
    REG_JNI(register_com_android_internal_content_NativeLibraryHelper),
    REG_JNI(register_com_android_internal_net_NetworkStatsFactory),
};

#ifdef NDEBUG
    #define REG_JNI(name) {name}
    struct RegJNIRec {
        int (*mProc)(JNIEnv*);
    };
#else
    #define REG_JNI(name) {name, #name}
    struct RegJNIRec {
        int (*mProc)(JNIEnv*);
        const char* mName;
    };
#endif

可以看到,REG_JNI是一个宏,宏里面包括的就是那个参数为JNIEnv*,返回值为int的函数指针mProc,我们以register_android_debug_JNITest为例,源码位置为/frameworks/base/core/jni/android_debug_JNITest.cpp:

#define NELEM(x) (sizeof(x)/sizeof(*(x)))

int register_android_debug_JNITest(JNIEnv* env)
{
    return jniRegisterNativeMethods(env, "android/debug/JNITest", gMethods, NELEM(gMethods));
}

可以看到,mProc其实就是为Java类注册JNI函数。


进入JAVA世界

可以看到CallStaticVoidMethod最终将调用com.android.internal.os.ZygoteInit的main函数,下面就来看一下这个Java世界的入口函数。源码位置:/frameworks/base/core/java/com/android/internal/os/ZygoteInit.java,源码如下:

public static void main(String argv[])
{
    try {
        SamplingProfilerIntegration.start();

        // 1. 注册zygote用的socket
        registerZygoteSocket();
        EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START, SystemClock.uptimeMillis());

        // 2. 预加载类和资源
        preload();
        EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END, SystemClock.uptimeMillis());

        SamplingProfilerIntegration.writeZygoteSnapshot();

        // 强制执行一次垃圾收集
        gc();

        Trace.setTracingEnabled(false);

        if (argv.length != 2) {
            throw new RuntimeException(argv[0] + USAGE_STRING);
        }

        if (argv[1].equals("start-system-server")) {
            // 3. 启动system-server
            startSystemServer();
        } else if (!argv[1].equals("")) {
            throw new RuntimeException(argv[0] + USAGE_STRING);
        }

        Log.i(TAG, "Accepting command socket connections");

        // 4. 进入请求应答模式
        runSelectLoop();
        closeServerSocket();

    } catch(MethodAndArgsCaller caller) {
        caller.run();
    } catch(RuntimeException ex) {
        Log.e(TAG, "Zygote died with exception", ex);
        closeServerSocket();
        throw ex;
    }
}

上述代码中有5个重要的点,我已经通过标号标记出来了,接下来我们分别分析一下这5点函数的具体实现。


建立IPC通信服务端——registerZygoteSocket

zygote及系统中其他程序的通信没有使用Binder,而是采用了基于AF_UNIX类型的socket。registerZygoteSocket函数的使命正是建立这个Socket,实现代码如下:

private static void registerZygoteSocket()
{
    if (sServerSocket == null) {
        int fileDesc;
        try {
            String env = System.getenv(ANDROID_SOCKET_ENV);
            fileDesc = Integer.parseInt(env);
        } catch (RuntimeException ex) {
            throw new RuntimeException(ANDROID_SOCKET_ENV + " unset or invalid", ex);
        }

        try {
            sServerSocket = new LocalServerSocket(createFileDescriptor(fileDesc));
        } catch(IOException ex) {
            throw new RuntimeException("Error binding to local socket ‘" + fileDesc + "‘", ex);
        }
    }
}

public class LocalServerSocket {
    private final LocalSocketImpl impl;
    private final LocalSocketAddress localAddress;

    private static final int LISTEN_BACKLOG = 50;

    /**
     * Create a LocalServerSocket from a file descriptor that‘s already
     * been created and bound. listen() will be called immediately on it.
     * Used for cases where file descriptors are passed in via environment
     * variables.
     */
    public LocalServerSocket(FileDescriptor fd) throws IOException {
        impl = new LocalSocketImpl(fd);
        impl.listen(LISTEN_BACKLOG);
        localAddress = impl.getSockAddress();
    }
}

registerZygoteSocket很简单,就是创建一个服务端的socket。


预加载类和资源——preload

我们先来看一下preload函数实现:

static void preload()
{
    preloadClasses();
    preloadResources();
    preloadOpenGL();
}

preload函数里面分别调用了三个预加载函数,我们分别来分析一下这几个函数的实现。

首先是preloadClasses,函数实现如下:

private static final int UNPRIVILEGED_UID = 9999;
private static final int UNPRIVILEGED_GID = 9999;

private static final int ROOT_UID = 0;
private static final int ROOT_GID = 0;

private static void preloadClasses()
{
    final VMRuntime runtime = VMRuntime.getRuntime();

    InputStream is = ClassLoader.getSystemClassLoader().getResourceAsStream(PRELOADED_CLASSES);
    if (is == null) {
        Log.e(TAG, "Couldn‘t find " + PRELOADED_CLASSES + ".");
    } else {
        Log.i(TAG, "Preloading classes...");
        long startTime = SystemClock.uptimeMillis();

        setEffectiveGroup(UNPRIVILEGED_GID);
        setEffectiveGroup(UNPRIVILEGED_UID);

        float defaultUtilization = runtime.getTargetHeapUtilization();
        runtime.setTargetHeapUtilization(0.8f);

        System.gc();
        runtime.runFinalizationSync();
        Debug.startAllocCounting();

        try {
            // 创建一个缓冲区为256字符的输入流
            BufferedReader br = new BufferdReader(new InputStreamReader(is), 256);
            int count = 0;
            String line;
            while ((line = br.readLine()) != null) {
                // skip comments and blank lines.
                line = line.trim();
                if (line.startsWith("#") || line.equals("")) {
                    continue;
                }

                try {
                    if (false) {
                        Log.v(TAG, "Preloading " + line + "...");
                    }
                    Class.forName(line);
                    count ++;
                } catch (ClassNotFoundException e) {
                    Log.w(TAG, "Class not found for preloading: " + line);
                } catch (UnsatisfiedLinkError e) {
                    Log.w(TAG, "Problem preloading " + line + ": " + e);
                } catch(Throwable t) {
                    Log.e(TAG, "Error preloading " + line + ".", t);
                }
            }
            Log.i(TAG, "...preloaded " + count + " classes in " + (SystemClock.uptimeMillis()-startTime) + "ms.");
        } catch (IOException e) {
            Log.e(TAG, "Error reading " + PRELOADED_CLASSES + ".", e);
        } finally {
            IoUtils.closeQuietly(is);
            runtime.setTargetHeapUtilization(defaultUtilization);

            runtime.preloadDexCaches();
            Debug.stopAllocCounting();

            setEffectiveUser(ROOT_UID);
            setEffectiveGroup(ROOT_GID);
        }
    }
}

preloadClasses看起来很简单,但是实际上它有很多的类需要加载。可以查看一下/frameworks/base/preloaded-classes文件,这里面都是需要预加载的类。

接下来,分析一下preloadResources函数的源码:

private static final boolean PRELOAD_RESOURCES = true;
private static void preloadResources()
{
    final VMRuntime runtime = VMRuntime.getRuntime();
    Debug.startAllocCounting();

    try {
        System.gc();
        runtime.runFinalizationSync();
        mResources = Resources.getSystem();
        mResources.startPreloading();
        if (PRELOAD_RESOURCES) {
            Log.i(TAG, "Preloading resources...");

            long startTime = SystemClock.uptimeMillis();
            TypedArray ar = mResources.obtainTypedArray(com.android.internal.R.array.preloaded_drawables);
            int N = preloadDrawables(runtime, ar);
            ar.recycle();
            Log.i(TAG, "...preloaded " + N + " resources in " + (SystemClock.uptimeMillis()-startTime) + "ms.");

            startTime = SystemClock.uptimeMillis();
            ar = mResources.obtainTypedArray(com.android.internal.R.array.preloaded_color_state_lists);
            N = preloadColorstateLists(runtime, ar);
            ar.recycle();
            Log.i(TAG, "...preloaded " + N + " resources in " + (SystemClock.uptimeMillis() - startTime) + "ms.");
        }
        mResources.finishPreloading();
    } catch (RuntimeException e) {
        Log.w(TAG, "Failure preloading resources", e);
    } finally {
        Debug.stopAllocCounting();
    }
}

接下来,是预加载OpenGL。源码如下:

private static void preloadOpenGL()
{
    if (!SystemProperties.getBoolean(PROPERTY_DISABLE_OPENGL_PRELOADING, false)) {
        EGL14.eglGetDisplay(EGL14.EGL_DEFAULT_DISPLAY);
    }
}

启动system_server

现在我们要分析第三个关键点:startSystemServer。这个函数会创建java世界中系统Service所驻留的进程system_server,该进程是framework的核心。如何system_server挂掉,会导致zygote自杀。我们来看一下startSystemServer()实现源码。

/**
 * Prepare the arguments and fork for the system server process.
 */
private static boolean startSystemServer() throws MethodAndArgsCaller, RuntimeException
{
    long capabilities = posixCapabilitiesAsBits(
        OsConstants.CAP_KILL,
        OsConstants.CAP_NET_ADMIN,
        OsConstants.CAP_NET_BIND_SERVICE,
        OsConstants.CAP_NET_BROADCAST,
        OsConstants.CAP_NET_RAW,
        OsConstants.CAP_SYS_MODULE,
        OsConstants.CAP_SYS_NICE,
        OsConstants.CAP_SYS_RESOURCE,
        OsConstants.CAP_SYS_TIME,
        OsConstants.CAP_SYS_TTY_CONFIG
    );

    // 设置参数
    String args[] = {
        "--setuid=1000",
        "--setgid=1000",
        "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1032,3001,3002,3003,3006,3007",
        "--capabilities=" + capabilities + "," + capabilities,
        "--runtime-init",
        "--nice-name=system_server", // 进程名为system_server
        "com.android.server.SystemServer",
    };

    ZygoteConnection.Arguments parsedArgs = null;

    int pid;

    try {
        parsedArgs = new ZygoteConnection.Arguments(args);
        ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
        ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);

        /* Request to fork the system server process */
        pid = Zygote.forkSystemServer(
                parsedArgs.uid, parsedArgs.gid,
                parsedArgs.gids,
                parsedArgs.debugFlags,
                null,
                parsedArgs.permittedCapabilities,
                parsedArgs.effectiveCapabilities
        );
    } catch (IllegalArgumentException ex) {
        throw new RuntimeException(ex);
    }

    /* For child process */
    if (pid == 0) {
        handleSystemServerProcess(parsedArgs);
    }

    return true;
}

有求必应之等待请求——runSelectLoop

zygote从startSystemServer返回后,将进入第四个关键的函数:runSelectLoop。我们来看一下这个函数的实现:

static final int GC_LOOP_COUNT = 10;
private static void runSelectLoop() throws MethodAndArgsCaller {
    ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
    ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
    FileDescriptor[] fdArray = new FileDescriptor[4];

    fds.add(sServerSocket.getFileDescriptor());
    peers.add(null);

    int loopCount = GC_LOOP_COUNT;
    while (true) {
        int index;
        if (loopCount <= 0) {
            gc();
            loopCount = GC_LOOP_COUNT;
        } else {
            loopCount --;
        }

        try {
            fdArray = fds.toArray(fdArray);
            index = selectReadable(fdArray);
        } catch(IOException ex) {
            throw new RuntimeException("Error in select()", ex);
        }

        if (index < 0) {
            throw new RuntimeException("Error in select()");
        } else if (index == 0) {
            ZygoteConnection newPeer = acceptCommandPeer();
            peers.add(newPeer);
        }
    }
}
时间: 2024-10-23 12:01:52

Android Zygote源码分析的相关文章

[Android]Fragment源码分析(一) 构造

Fragment是Android3.0之后提供的api,被大家广泛所熟知的主要原因还是因为随即附带的ViewPager控件.虽然我并不喜欢用它,但是它确实是一个相对不错的控件.还是我的一贯作风,我将从源码上向大家展示什么是Fragment.我们先写一个简单的代码对Fragment有个直观的认识:(为了保证我们方便调试,我们可以直接使用V4提供的源码包) FragmentTransaction t = getSupportFragmentManager().beginTransaction();

[Android]Volley源码分析(四)

上篇中有提到NetworkDispatcher是通过mNetwork(Network类型)来进行网络访问的,现在来看一下关于Network是如何进行网络访问的. Network部分的类图: Network有一个实现类BasicNetwork,它有一个mHttpStack的属性,实际的网络请求是由这个mHttpStack来进行的,看BasicNetwork的performRequest()方法, 1 @Override 2 public NetworkResponse performRequest

android 从源码分析为什么Listview初次显示时没滚动却自动调用onScroll方法的原因

我们做Listview的分批加载时,需要为Listview调用setOnScrollListener(具体代码可见我上一篇博客) 可是,我们会发现,当运行程序时,listview明明没有滚动,那为什么系统会调用onScroll方法呢?(补充:此时onScrollStateChanged并不会调用) 我们先看setOnScrollListener源码: public void setOnScrollListener(OnScrollListener l) { mOnScrollListener =

[Android]Fragment源码分析(三) 事务

Fragment管理中,不得不谈到的就是它的事务管理,它的事务管理写的非常的出彩.我们先引入一个简单常用的Fragment事务管理代码片段: FragmentTransaction ft = this.getSupportFragmentManager().beginTransaction(); ft.add(R.id.fragmentContainer, fragment, "tag"); ft.addToBackStack("<span style="fo

[Android]Volley源码分析(二)Cache

Cache作为Volley最为核心的一部分,Volley花了重彩来实现它.本章我们顺着Volley的源码思路往下,来看下Volley对Cache的处理逻辑. 我们回想一下昨天的简单代码,我们的入口是从构造一个Request队列开始的,而我们并不直接调用new来构造,而是将控制权反转给Volley这个静态工厂来构造. com.android.volley.toolbox.Volley: public static RequestQueue newRequestQueue(Context conte

[Android]Volley源码分析(叁)Network

如果各位看官仔细看过我之前的文章,实际上Network这块的只是点小功能的补充.我们来看下NetworkDispatcher的核心处理逻辑: <span style="font-size:18px;">while (true) { try { // Take a request from the queue. request = mQueue.take(); } catch (InterruptedException e) { // We may have been int

[Android]Volley源码分析(肆)应用

通过前面的讲述,相信你已经对Volley的原理有了一定了解.本章将举一些我们能在应用中直接用到的例子,第一个例子是 NetworkImageView类,其实NetworkImageView顾名思义就是将异步的操作封装在了控件本身,这种设计可以充分保留控件的移植性和维护性.NetworkImageView通过调用setImageUrl来指定具体的url: public void setImageUrl(String url, ImageLoader imageLoader) { mUrl = ur

Android IntentService 源码分析

IntentService简介: IntentService是一个通过Context.startService(Intent)启动可以处理异步请求的Service,使用时你只需要继承IntentService和重写其中的onHandleIntent(Intent)方法接收一个Intent对象,该服务会在异步任务完成时自动停止服务. 所有的请求的处理都在IntentService内部工作线程中完成,它们会顺序执行任务(但不会阻塞主线程的执行),某一时刻只能执行一个异步请求. IntnetServi

[Android] Volley源码分析(一)体系结构

Volley:google出的一个用于异步处理的框架.由于本身的易用性和良好的api,使得它能得以广泛的应用.我还是一如既往从源码的方向上来把控它.我们先通过一段简单的代码来了解Volley RequestQueue queue = Volley.newRequestQueue(this); ImageRequest imagerequest = new ImageRequest(url, new Response.Listener<Bitmap>(){ @Override public vo