【BZOJ 1013】 [JSOI2008]球形空间产生器sphere

Description

有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。

Output

有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

数据规模:

对于40%的数据,1<=n<=3

对于100%的数据,1<=n<=10

提示:给出两个定义:

1、 球心:到球面上任意一点距离都相等的点。

2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )

高斯消元

由(x1-x)^2+(y1-y)^2=k

 (x2-x)^2+(y2-y)^2=k

展开相减得一个2*(x2-x1)*x+2*(y2-y1)*y=x2^2-x1^2+y2^2-y1^2

就可以消元了

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #define eps 1e-6
 6 using namespace std;
 7 int n;
 8 double f[21],a[21][21],b[21][21];
 9 double sqr(double x) {
10     return x*x;
11 }
12
13 bool gauss(){
14     int now=1,to;double t;
15     for(int i=1;i<=n;i++){
16         for(to=now;to<=n;to++)
17         if(fabs(a[to][i])>eps) break;
18         if(to>n) continue;
19         if(to!=now) for(int j=1;j<=n+1;j++)
20             swap(a[to][j],a[now][j]);
21         t=a[now][i];
22         for(int j=1;j<=n+1;j++) a[now][j]/=t;
23         for(int j=1;j<=n;j++) if(j!=now){
24             t=a[j][i];
25             for(int k=1;k<=n+1;k++)
26             a[j][k]-=t*a[now][k];
27         }
28         now++;
29     }
30     for(int i=now;i<=n;i++)
31         if(fabs(a[i][n+1])>eps)return 0;
32      return 1;
33 }
34
35 int main(){
36     scanf("%d",&n);
37     for(int i=1;i<=n+1;i++){
38         for(int j=1;j<=n;j++)
39             scanf("%lf",&b[i][j]);
40     }
41     for(int i=1;i<=n;i++)
42         for(int j=1;j<=n;j++){
43             a[i][j]+=2*(b[i+1][j]-b[i][j]);
44             a[i][n+1]+=sqr(b[i+1][j])-sqr(b[i][j]);
45         }
46     gauss();
47     printf("%.3lf",a[1][n+1]);
48     for(int i=2;i<=n;i++) printf(" %.3lf",a[i][n+1]);
49 }
时间: 2024-11-06 10:54:23

【BZOJ 1013】 [JSOI2008]球形空间产生器sphere的相关文章

BZOJ 1013: [JSOI2008]球形空间产生器sphere

二次联通门 : BZOJ 1013: [JSOI2008]球形空间产生器sphere /* BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元 QAQ SB的我也能终于能秒题了啊 设球心的坐标为(x,y,z...) 那么就可以列n+1个方程,化化式子高斯消元即可 */ #include <cstdio> #include <iostream> #include <cstring> #define rg register #define Max

bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Submit][Status][Discuss] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接

BZOJ 1013 [JSOI2008]球形空间产生器sphere 【高斯消元】

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. HINT 1<=n<=10 提示:给出两个定义:1. 球心:到球面上任意一点距离都相等的点.2. 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 +

【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精确到小数点后3位.数

BZOJ 1013 JSOI2008 球形空间产生器sphere 高斯消元

题目大意:给定n维空间下的n+1个点,求这n个点所在的球面的球心 曾经尝试了很久的模拟退火0.0 至今仍未AC 0.0 今天挖粪涂墙怒学了高斯消元-- 我们设球心为X(x1,x2,...,xn) 假设有两点A(a1,a2,...,an)和B(b1,b2,...,bn) 那么我们可以得到两个方程 (x1-a1)^2+(x2-a2)^2+...+(xn-an)^2=r^2 (x1-b1)^2+(x2-b2)^2+...+(xn-bn)^2=r^2 这些方程都是二次的,无法套用高斯消元 但是我们可以做

【高斯消元】【JSOI 2008】【bzoj 1013】球形空间产生器sphere

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3211 Solved: 1685 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维

1013: [JSOI2008]球形空间产生器sphere

1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6517  Solved: 3381[Submit][Status][Discuss] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<

【BZOJ】1013: [JSOI2008]球形空间产生器sphere(高斯消元)

http://www.lydsy.com/JudgeOnline/problem.php?id=1013 只要列出方程组就能套高斯来解了. 显然距离相等,所以开不开平方都无所谓. b表示圆心,可列 sigma((x[i][j]-b[j])^2)=sigma((x[i+1][j]-b[j])^2) 化简得 sigma(2*b[j]*(x[i+1][j]-x[i][j]))=sigma(x[i+1][j]^2-x[i][j]^2) 然后就得到n个等式,而且题目保证有解,就套高斯就行了. 第一次学高斯

HYSBZ 1013: [JSOI2008]球形空间产生器sphere(高斯消元啊 模板)

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数,n.接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Out

bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere

http://www.lydsy.com/JudgeOnline/problem.php?id=1013 设球心(x1,x2,x3……) 已知点的坐标为t[i][j] 那么 对于每个i满足 Σ (t[i][j]-x[j])^2 = Σ (t[0][j]-x[j])^2 化简开就是 2*(t[0][j]-t[i][j])*x[j] = t[0][j]^2-t[i][j]^2 n个方程n个未知数 高斯消元 #include<cmath> #include<cstdio> #includ