题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2227
Find the nondecreasing subsequences
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1466 Accepted Submission(s): 521
Problem Description
How many nondecreasing subsequences can you find in the sequence S = {s1, s2, s3, ...., sn} ? For example, we assume that S = {1, 2, 3}, and you can find seven nondecreasing subsequences, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1,
2, 3}.
Input
The input consists of multiple test cases. Each case begins with a line containing a positive integer n that is the length of the sequence S, the next line contains n integers {s1, s2, s3, ...., sn}, 1 <= n <= 100000, 0 <= si <= 2^31.
Output
For each test case, output one line containing the number of nondecreasing subsequences you can find from the sequence S, the answer should % 1000000007.
Sample Input
3 1 2 3
Sample Output
7
Author
8600
思路:dp[i] 表示以第i个数为结尾的不递减子序列的个数;
那么状态转移方程式:dp[i]=sum( dp[k] ) +1; 其中a[i]>a[k]&&k<i; 这个应该好想
最朴素的方法是O(n*n),但是在这题中n的数据太大,会超时,所以再想到树状数组动态维护一段区间的和,所以先把n个数离散化一下,然后再树状数组求和;
PS:另外再说两点 (1)这题和hdu4991类似;都是dp+离散化+树状数组
(2)说实话,这题题意不明确,我都想了半天,举个例子
INPUT: 3
1 1 2
OUTPUT: 7
按AC程序:不递减子序列有7个分别为: (1),(1,1),(1),(2),(1,2),(1,2),(1,1,2),按题目的意思是对重复的组合也得算进去,这地方有点坑;
#include <iostream> #include <stdio.h> #include <memory.h> #include <algorithm> const int mod=1000000007; using namespace std; struct node { int val, id; }a[100005]; bool cmp(node a, node b) { return a.val < b.val; } int b[100005], c[100005], s[100005],dp[100005],n; int lowbit(int i) { return i&(-i); } void update(int i, int x) { while(i <= n) { s[i] += x; if(s[i] >= mod) s[i] %= 1000000007; i += lowbit(i); } } int getsum(int i) { int sum = 0; while(i > 0) { sum += s[i]; if(sum >= 1000000007) sum %= 1000000007; i -= lowbit(i); } return sum; } int main() { while(scanf("%d", &n) != EOF) { memset(b, 0, sizeof(b)); memset(s, 0, sizeof(s)); memset(c,0,sizeof(c)); for(int i = 1; i <= n; i++) { scanf("%d", &a[i].val); a[i].id = i; } sort(a+1, a+n+1, cmp); b[a[1].id] = 1; for(int i = 2; i <= n; i++) { if(a[i].val != a[i-1].val) b[a[i].id] = i; else b[a[i].id] = b[a[i-1].id]; } for(int i=1;i<=100005;i++)dp[i]=1; for(int i=1;i<=n;i++) { dp[i]=dp[i]+getsum(b[i]); update(b[i],dp[i]); } int ans=0; for(int i=1;i<=n;i++) ans=(ans+dp[i])%mod; printf("%d\n",ans); /*res = 0; //两种写法 for(i = 1; i <= n; i++) { c[i] = sum(b[i]); update(b[i], c[i]+1); } printf("%d\n", sum(n)); */ } return 0; }