数论 UVA 11076

这道题目的意思简单易懂说的是给你n个数(可能有重复相同的数字),列出他们所有排列的情况,再逐位相加,求出和,例如:给你1,2,3,则排列的情况为<123>, <132>, <213>, <231>, <312>, <321> ,则相加的和为1332。思路很好把握,但是需要比较扎实的数学基础,因为该问题的核心公式需要理解和记忆否则很难做出来。

这道题目的核心知识点是:多重集合排列(也叫不全相异元素全排列),这里有一个定理:设S是一个多重集合,其中有k种不同的元素,各种元素的个数分别是:n1,n2,…nk。设S中所有元素的个数是n=n1+n2+...+nk。则S的全排列数(n-排列)为:n!/(n1!*n2!*n3!*...nk!)。

证明:通过观察和分析,我们会发现S的全排列中的每一种情况都包含了S中的每一个元素,并且每个元素在每一种情况中出现的次数都等于该种元素所拥有的元素个数。因此我们可以构造这样的一个排列,n个位置,n个元素,元素中存在同类元素(也可以看做是相同元素)。首先,我们为第1类的n1个元素指定位置,那么有C(n,n1)种情况。处理完后,我们接着对第2类的n2个元素指定位置,那么有C(n-n1,n2)种情况。以此类推,我们可以得出第k类的nk个元素指定位置有C(n-n1-n2-...-nk-1,nk)种情况。根据乘法原理,排列元素的的方法数为C(n,n1)*C(n-n1,n2)*...*C(n-n1-n2-..nk-1,nk)=n!/n1!(n-n1)!*(n-n1)!/n2!(n-n1-n2)!*...化简后n!/(n1!n2!...nk!0!)=n!/(n1!n2!...nk!)。

到这里,这道题目已经完成了70%了,剩下的30%则是对问题的又一个转化。我们知道,在全排列中,任意一个数字出现在各个位置上的次数是相同的,那么求和后,每一位上的数字的和都是每种数字出现的次数乘上每种数字的值然后求和,之后只需要乘上相应数位上的10^k并且考虑好进位就能算出结果。求每一位上每种数字出现的次数,则需要通过分析来化简,因为每一位上每种数字出现的次数是相同的,这是通过分析与观察得出的,那么我们只需要求出某一位上每种数字出现的次数即可,然后算出这一位的总和,由于每一位上的总共和都相同,只不过需要解决进位和乘上的10的次方来保证数位。值得一提的是,这道题目的数据会很大,存储答案的变量最好用unsigned long long 来存储。

#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
int jc[15],num[12],re[15];
int main()
{
int n,i;
for(jc[0]=i=1;i<15;i++)
jc[i]=jc[i-1]*i;
while(scanf("%d",&n)!=EOF&&n)
{
memset(num,0,sizeof(num));
int t,m=0;
for(i=0;i<n;i++)
{
scanf("%d",&t);
num[t]++;
if(num[t]==1)
re[m++]=t;
}
unsigned long long temp,sum=0;
int j;
for(i=0;i<m;i++)
{
temp=jc[num[re[i]]-1];
for(j=0;j<m;j++)//计算某一位上的和,由于这一和值在每一位上都一样,所以只需要计算出一位即可。
{
if(j==i)
continue;
temp*=jc[num[re[j]]];
}
sum+=((jc[n-1]/temp)*re[i]);
}
temp=sum;
sum=0;
for(i=0;i<n;i++)
{
sum+=temp;
temp*=10;//将每一位的和还原到每一位上去。
}
cout<<sum<<endl;
}

return 0;
}

时间: 2024-10-07 16:11:55

数论 UVA 11076的相关文章

UVA - 11076 Add Again (重复元素的排列)

Summation of sequence of integersis always a common problem in Computer Science. Rather than computing blindly,some intelligent techniques make the task simpler. Here you have to find thesummation of a sequence of integers. The sequence is an interes

Uva 11076 Add Again (数论+组合数学)

题意:给你N个数,求把他们的全排列加和为多少 思路:对于这道题,假设数字k1在第一位,然后求出剩下N-1位的排列数num1,我们就可以知道k1在第一位时的排列有多少种为kind1, 同理,假设数字k2在第一位然后求出剩下N-1位的排列数num2,我们就可以知道k2在第一位时的排列有多少种为kind2, k1*num1+k1*num2.....+kn*numn 就是我们要求的这些数对第一位的所有贡献,我们知道第一位的贡献=对第二位的贡献=第三位的贡献..... 把所有贡献加和,就能求出结果 知识:

【数论】UVa 11076 - Add Again

Add AgainInput: Standard Input Output: Standard Output Summation of sequence of integers is always a common problem in Computer Science. Rather than computing blindly, some intelligent techniques make the task simpler. Here you have to find the summa

数论 UVA 10780

数论题目.有关内容:整数质因数分解,N的阶乘质因数分解,整除的判断. 这道题的题意是给你两个数n.m,要求你求出n!所能整除的m^k的最大值的k是多少. 由于数据范围:1<m<5000,1<n<10000.通过分析我们可知,当n在100 以上后n!早已超出了int甚至__int64的范围了.即使在int范围内,要算出n!和m^k然后依次遍历,这样会超时. 所以我们可以考虑将如果m能整除n!,那么m^k才会有可能整除n!.如果n!可以整除m,那么将m进行质因数分解后,所得的所有质因子

数论 UVA 10943

这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这里有N个相同的小球,要求放到k个相同的盒子中,盒子可以为空,但一定要把所有球都放进盒子中,问共有多少种放法.经过题目描述的转换,这道题目就可以运用隔板法的公式:所有符合条件的情况的种数为c[N+k-1][k-1]. 由组合数的公式可得c[m][n]=c[m-1][n-1]+c[m-1][n].由于这

数论 UVA 11889

有关数论的题目,题目大意是给你两个数a和c,c为a和另一个数b的最小公倍数,要求你求出b的最小值.由最大公约数gcd(a,b)和最小公倍数lcm(a,b)之间的关系可知,lcm(a,b)*gcd(a,b)=a*b; 则b=lcm(a,b)*gcd(a,b)/a,b=c*gcd(a,b)/a,b/gcd(a,b)=c/a.因为c/a是b除去gcd(a,b)后的部分.若gcd(a,c/a)=1,就表明c/a就是我们要求的答案:否则,就说明c/a小于b,需要还原.还原 的过程中,首先求出gcd(a,c

UVA 11076 Add Again

题目链接:UVA-33478 题意为给定n个数,求这n个数能组成的所有不同的排列组成的数字的和. 思路:发现对于任意一个数字,其在每一位出现的次数是相同的.换言之,所有数字的每一位相加的和是相同的. 所以我们只需求出这个"和"即可. 考虑任意一位i,假设我们在i位放置x,则对应\( (n-1)! / ( d_0! * d_1! * ... * d_x! * ... * d_9! ) \)种情况. 所以我们要求的"和"等于\(\sum_x x * (n-1)! / (

UVA 11076 Add Again 计算对答案的贡献+组合数学

A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs. For example 12 is the LCM of (1, 12), (2, 12), (3,4) etc. For a given positive integer N, thenumber of di?erent integer pairs with LCM is equal to N

数论 UVA 11388

这道题是关于两个数的最大公约数和最小公倍数的题目.给你两个数字g,l,分别表示最大公约数和最小公倍数.要求你找到两个数a,b,要求这两个数的最大公约数和最小公倍数为所给的两个数.如果存在多组数字符合这一条件, 就输出a最小的那一组数字.由最大公约数和最小公倍数与两个数的关系可得,a*b=l*g,g<=a,b<=l,a%g==b%g==0,l%a==l%b==0.则所要求的a最小的那组数据,其实就是当a==g时所求出的那组数据. #include <stdio.h> #include