Go 是一个开源的编程语言,它能让构造简单、可靠且高效的软件变得容易。
Go是从2007年末由Robert Griesemer, Rob Pike, Ken Thompson主持开发,后来还加入了Ian Lance Taylor, Russ Cox等人,并最终于2009年11月开源,在2012年早些时候发布了Go 1稳定版本。现在Go的开发已经是完全开放的,并且拥有一个活跃的社区。
Go 语言环境安装
Go 语言支持以下系统:
- Linux
- FreeBSD
- Mac OS X(也称为 Darwin)
- Window
安装包下载地址为:https://golang.org/dl/。(这个地址我试了,不太好连接,也可能是我网络的问题)
UNIX/Linux/Mac OS X, 和 FreeBSD 安装
以下介绍了在UNIX/Linux/Mac OS X, 和 FreeBSD系统下使用源码安装方法:
1、下载源码包:go1.4.linux-amd64.tar.gz。
2、将下载的源码包解压至 /usr/local目录。
tar -C /usr/local -xzf go1.4.linux-amd64.tar.gz
3、将 /usr/local/go/bin 目录添加至PATH环境变量:
export PATH=$PATH:/usr/local/go/bin
注意:MAC 系统下你可以使用 .pkg 结尾的安装包直接双击来完成安装,安装目录在 /usr/local/go/ 下。
Windows 系统下安装
Windows 下可以使用 .msi 后缀(在下载列表中可以找到该文件,如go1.4.2.windows-amd64.msi)的安装包来安装。
默认情况下.msi文件会安装在 c:\Go 目录下。你可以将 c:\Go\bin 目录添加到 PATH 环境变量中。添加后你需要重启命令窗口才能生效。
Go 语言结构
Go Hello World 实例
Go 语言的基础组成有以下几个部分:
- 包声明
- 引入包
- 函数
- 变量
- 语句 & 表达式
- 注释
接下来让我们来看下简单的代码,该代码输出了"Hello World!":
package main import "fmt" func main() { /* 这是我的第一个简单的程序 */ fmt.Println("Hello, World!") }
让我们来看下以上程序的各个部分:
- 第一行代码 package main 定义了包名。你必须在源文件中非注释的第一行指明这个文件属于哪个包,如:package main。package main表示一个可独立执行的程序,每个 Go 应用程序都包含一个名为 main 的包。
- 下一行 import "fmt" 告诉 Go 编译器这个程序需要使用 fmt 包(的函数,或其他元素),fmt 包实现了格式化 IO(输入/输出)的函数。
- 下一行 func main() 是程序开始执行的函数。main 函数是每一个可执行程序所必须包含的,一般来说都是在启动后第一个执行的函数(如果有 init() 函数则会先执行该函数)。
- 下一行 /*...*/ 是注释,在程序执行时将被忽略。单行注释是最常见的注释形式,你可以在任何地方使用以 // 开头的单行注释。多行注释也叫块注释,均已以 /* 开头,并以 */ 结尾,且不可以嵌套使用,多行注释一般用于包的文档描述或注释成块的代码片段。
- 下一行 fmt.Println(...) 可以将字符串输出到控制台,并在最后自动增加换行字符 \n。
使用 fmt.Print("hello, world\n") 可以得到相同的结果。
Print 和 Println 这两个函数也支持使用变量,如:fmt.Println(arr)。如果没有特别指定,它们会以默认的打印格式将变量 arr 输出到控制台。 - 当标识符(包括常量、变量、类型、函数名、结构字段等等)以一个大写字母开头,如:Group1,那么使用这种形式的标识符的对象就可以被外部包的代码所使用(客户端程序需要先导入这个包),这被称为导出(像面向对象语言中的 public);标识符如果以小写字母开头,则对包外是不可见的,但是他们在整个包的内部是可见并且可用的(像面向对象语言中的 protected )。
Go 语言基础语法
行分隔符
在 Go 程序中,一行代表一个语句结束。每个语句不需要像 C 家族中的其它语言一样以分号 ; 结尾,因为这些工作都将由 Go 编译器自动完成。
如果你打算将多个语句写在同一行,它们则必须使用 ; 人为区分,但在实际开发中我们并不鼓励这种做法。
关键字
下面列举了 Go 代码中会使用到的 25 个关键字或保留字:
break | default | func | interface | select |
case | defer | go | map | struct |
chan | else | goto | package | switch |
const | fallthrough | if | range | type |
continue | for | import | return | var |
除了以上介绍的这些关键字,Go 语言还有 36 个预定义标识符:
append | bool | byte | cap | close | complex | complex64 | complex128 | uint16 |
copy | false | float32 | float64 | imag | int | int8 | int16 | uint32 |
int32 | int64 | iota | len | make | new | nil | panic | uint64 |
println | real | recover | string | true | uint | uint8 | uintptr |
Go 语言数据类型
Go 语言按类别有以下几种数据类型:
序号 | 类型和描述 |
---|---|
1 | 布尔型 布尔型的值只可以是常量 true 或者 false。一个简单的例子:var b bool = true。 |
2 | 数字类型 整型 int 和浮点型 float,Go 语言支持整型和浮点型数字,并且原生支持复数,其中位的运算采用补码。 |
3 | 字符串类型: 字符串就是一串固定长度的字符连接起来的字符序列。Go的字符串是由单个字节连接起来的。Go语言的字符串的字节使用UTF-8编码标识Unicode文本。 |
4 | 派生类型: 包括:
|
数字类型
Go 也有基于架构的类型,例如:int、uint 和 uintptr。
序号 | 类型和描述 |
---|---|
1 | uint8 无符号 8 位整型 (0 到 255) |
2 | uint16 无符号 16 位整型 (0 到 65535) |
3 | uint32 无符号 32 位整型 (0 到 4294967295) |
4 | uint64 无符号 64 位整型 (0 到 18446744073709551615) |
5 | int8 有符号 8 位整型 (-128 到 127) |
6 | int16 有符号 16 位整型 (-32768 到 32767) |
7 | int32 有符号 32 位整型 (-2147483648 到 2147483647) |
8 | int64 有符号 64 位整型 (-9223372036854775808 到 9223372036854775807) |
浮点型:
序号 | 类型和描述 |
---|---|
1 | float32 IEEE-754 32位浮点型数 |
2 | float64 IEEE-754 64位浮点型数 |
3 | complex64 32 位实数和虚数 |
4 | complex128 64 位实数和虚数 |
其他数字类型
以下列出了其他更多的数字类型:
序号 | 类型和描述 |
---|---|
1 | byte 类似 uint8 |
2 | rune 类似 int32 |
3 | uint 32 或 64 位 |
4 | int 与 uint 一样大小 |
5 | uintptr 无符号整型,用于存放一个指针 |
Go 语言变量
声明变量的一般形式是使用 var 关键字:var identifier type
变量声明
第一种,指定变量类型,声明后若不赋值,使用默认值。
var v_name v_type v_name = value
第二种,根据值自行判定变量类型。
var v_name = value
第三种,省略var, 注意 :=左侧的变量不应该是已经声明过的,否则会导致编译错误。
v_name := value // 例如 var a int = 10 var b = 10 c : = 10
多变量声明
//类型相同多个变量, 非全局变量 var vname1, vname2, vname3 type vname1, vname2, vname3 = v1, v2, v3 var vname1, vname2, vname3 = v1, v2, v3 //和python很像,不需要显示声明类型,自动推断 vname1, vname2, vname3 := v1, v2, v3 //出现在:=左侧的变量不应该是已经被声明过的,否则会导致编译错误 // 这种因式分解关键字的写法一般用于声明全局变量 var ( vname1 v_type1 vname2 v_type2 )
简短形式,使用 := 赋值操作符
声明语句写上 var 关键字其实是显得有些多余了,可以将它们简写为 a := 50 或 b := false。类型(int 和 bool)将由编译器自动推断。
这是使用变量的首选形式,但是它只能被用在函数体内,而不可以用于全局变量的声明与赋值。使用操作符 := 可以高效地创建一个新的变量,称之为初始化声明。
注意事项
多变量可以在同一行进行赋值,如:
a, b, c = 5, 7, "abc"
上面这行假设了变量 a,b 和 c 都已经被声明,否则的话应该这样使用:
a, b, c := 5, 7, "abc"
右边的这些值以相同的顺序赋值给左边的变量,所以 a 的值是 5, b 的值是 7,c 的值是 "abc"。
这被称为 并行 或 同时 赋值。
如果你想要交换两个变量的值,则可以简单地使用 a, b = b, a。
空白标识符 _ 也被用于抛弃值,如值 5 在:_, b = 5, 7 中被抛弃。
_ 实际上是一个只写变量,你不能得到它的值。这样做是因为 Go 语言中你必须使用所有被声明的变量,但有时你并不需要使用从一个函数得到的所有返回值。
并行赋值也被用于当一个函数返回多个返回值时,比如这里的 val 和错误 err 是通过调用 Func1 函数同时得到:val, err = Func1(var1)。
Go 语言常量
常量是一个简单值的标识符,在程序运行时,不会被修改的量。
常量中的数据类型只可以是布尔型、数字型(整数型、浮点型和复数)和字符串型。
常量的定义格式:
const identifier [type] = value
你可以省略类型说明符 [type],因为编译器可以根据变量的值来推断其类型。
- 显式类型定义:
const b string = "abc"
- 隐式类型定义:
const b = "abc"
多个相同类型的声明可以简写为:
const c_name1, c_name2 = value1, value2
iota
iota,特殊常量,可以认为是一个可以被编译器修改的常量。
在每一个const关键字出现时,被重置为0,然后再下一个const出现之前,每出现一次iota,其所代表的数字会自动增加1。
iota 可以被用作枚举值:
const ( a = iota b = iota c = iota )
第一个 iota 等于 0,每当 iota 在新的一行被使用时,它的值都会自动加 1;所以 a=0, b=1, c=2 可以简写为如下形式:
const ( a = iota b c )
iota 用法
package main import "fmt" func main() { const ( a = iota //0 b //1 c //2 d = "ha" //独立值,iota += 1 e //"ha" iota += 1 f = 100 //iota +=1 g //100 iota +=1 h = iota //7,恢复计数 i //8 ) fmt.Println(a,b,c,d,e,f,g,h,i) }
以上实例运行结果为:
0 1 2 ha ha 100 100 7 8
Go 语言运算符
算术运算符
下表列出了所有Go语言的算术运算符。假定 A 值为 10,B 值为 20。
运算符 | 描述 | 实例 |
---|---|---|
+ | 相加 | A + B 输出结果 30 |
- | 相减 | A - B 输出结果 -10 |
* | 相乘 | A * B 输出结果 200 |
/ | 相除 | B / A 输出结果 2 |
% | 求余 | B % A 输出结果 0 |
++ | 自增 | A++ 输出结果 11 |
-- | 自减 | A-- 输出结果 9 |
关系运算符
下表列出了所有Go语言的关系运算符。假定 A 值为 10,B 值为 20。
运算符 | 描述 | 实例 |
---|---|---|
== | 检查两个值是否相等,如果相等返回 True 否则返回 False。 | (A == B) 为 False |
!= | 检查两个值是否不相等,如果不相等返回 True 否则返回 False。 | (A != B) 为 True |
> | 检查左边值是否大于右边值,如果是返回 True 否则返回 False。 | (A > B) 为 False |
< | 检查左边值是否小于右边值,如果是返回 True 否则返回 False。 | (A < B) 为 True |
>= | 检查左边值是否大于等于右边值,如果是返回 True 否则返回 False。 | (A >= B) 为 False |
<= | 检查左边值是否小于等于右边值,如果是返回 True 否则返回 False。 | (A <= B) 为 True |
逻辑运算符
下表列出了所有Go语言的逻辑运算符。假定 A 值为 True,B 值为 False。
运算符 | 描述 | 实例 |
---|---|---|
&& | 逻辑 AND 运算符。 如果两边的操作数都是 True,则条件 True,否则为 False。 | (A && B) 为 False |
|| | 逻辑 OR 运算符。 如果两边的操作数有一个 True,则条件 True,否则为 False。 | (A || B) 为 True |
! | 逻辑 NOT 运算符。 如果条件为 True,则逻辑 NOT 条件 False,否则为 True。 | !(A && B) 为 True |
位运算符
Go 语言支持的位运算符如下表所示。假定 A 为60,B 为13:
运算符 | 描述 | 实例 |
---|---|---|
& | 按位与运算符"&"是双目运算符。 其功能是参与运算的两数各对应的二进位相与。 | (A & B) 结果为 12, 二进制为 0000 1100 |
| | 按位或运算符"|"是双目运算符。 其功能是参与运算的两数各对应的二进位相或 | (A | B) 结果为 61, 二进制为 0011 1101 |
^ | 按位异或运算符"^"是双目运算符。 其功能是参与运算的两数各对应的二进位相异或,当两对应的二进位相异时,结果为1。 | (A ^ B) 结果为 49, 二进制为 0011 0001 |
<< | 左移运算符"<<"是双目运算符。左移n位就是乘以2的n次方。 其功能把"<<"左边的运算数的各二进位全部左移若干位,由"<<"右边的数指定移动的位数,高位丢弃,低位补0。 | A << 2 结果为 240 ,二进制为 1111 0000 |
>> | 右移运算符">>"是双目运算符。右移n位就是除以2的n次方。 其功能是把">>"左边的运算数的各二进位全部右移若干位,">>"右边的数指定移动的位数。 | A >> 2 结果为 15 ,二进制为 0000 1111 |
赋值运算符
下表列出了所有Go语言的赋值运算符。
运算符 | 描述 | 实例 |
---|---|---|
= | 简单的赋值运算符,将一个表达式的值赋给一个左值 | C = A + B 将 A + B 表达式结果赋值给 C |
+= | 相加后再赋值 | C += A 等于 C = C + A |
-= | 相减后再赋值 | C -= A 等于 C = C - A |
*= | 相乘后再赋值 | C *= A 等于 C = C * A |
/= | 相除后再赋值 | C /= A 等于 C = C / A |
%= | 求余后再赋值 | C %= A 等于 C = C % A |
<<= | 左移后赋值 | C <<= 2 等于 C = C << 2 |
>>= | 右移后赋值 | C >>= 2 等于 C = C >> 2 |
&= | 按位与后赋值 | C &= 2 等于 C = C & 2 |
^= | 按位异或后赋值 | C ^= 2 等于 C = C ^ 2 |
|= | 按位或后赋值 | C |= 2 等于 C = C | 2 |
其他运算符
下表列出了Go语言的其他运算符。
运算符 | 描述 | 实例 |
---|---|---|
& | 返回变量存储地址 | &a; 将给出变量的实际地址。 |
* | 指针变量。 | *a; 是一个指针变量 |
运算符优先级
有些运算符拥有较高的优先级,二元运算符的运算方向均是从左至右。下表列出了所有运算符以及它们的优先级,由上至下代表优先级由高到低:
优先级 | 运算符 |
---|---|
7 | ^ ! |
6 | * / % << >> & &^ |
5 | + - | ^ |
4 | == != < <= >= > |
3 | <- |
2 | && |
1 | || |
Go 语言 switch 语句
语法
Go 编程语言中 switch 语句的语法如下:
switch var1 { case val1: ... case val2: ... default: ... }
switch 语句执行的过程从上至下,直到找到匹配项,匹配项后面也不需要再加break
Type Switch
switch 语句还可以被用于 type-switch 来判断某个 interface 变量中实际存储的变量类型。
Type Switch 语法格式如下:
switch x.(type){ case type: statement(s); case type: statement(s); /* 你可以定义任意个数的case */ default: /* 可选 */ statement(s); }
Go 语言 select 语句
select是Go中的一个控制结构,类似于用于通信的switch语句。每个case必须是一个通信操作,要么是发送要么是接收。
select随机执行一个可运行的case。如果没有case可运行,它将阻塞,直到有case可运行。一个默认的子句应该总是可运行的。
语法
Go 编程语言中 select 语句的语法如下:
select { case communication clause : statement(s); case communication clause : statement(s); /* 你可以定义任意数量的 case */ default : /* 可选 */ statement(s); }
以下描述了 select 语句的语法:
- 每个case都必须是一个通信
- 所有channel表达式都会被求值
- 所有被发送的表达式都会被求值
- 如果任意某个通信可以进行,它就执行;其他被忽略。
- 如果有多个case都可以运行,Select会随机公平地选出一个执行。其他不会执行。
否则:- 如果有default子句,则执行该语句。
- 如果没有default字句,select将阻塞,直到某个通信可以运行;Go不会重新对channel或值进行求值。
Go 语言 for 循环
Go语言的For循环有3中形式,只有其中的一种使用分号。
和 C 语言的 for 一样:
for init; condition; post { }
和 C 的 while 一样:
for condition { }
和 C 的 for(;;) 一样:
for { }
实例
package main import "fmt" func main() { var b int = 15 var a int numbers := [6]int{1, 2, 3, 5} /* for 循环 */ for a := 0; a < 10; a++ { fmt.Printf("a 的值为: %d\n", a) } for a < b { a++ fmt.Printf("a 的值为: %d\n", a) } for i,x:= range numbers { fmt.Printf("第 %d 位 x 的值 = %d\n", i,x) } }
Go 语言函数
函数定义
Go 语言函数定义格式如下:
func function_name( [parameter list] ) [return_types] { 函数体 }
函数定义解析:
- func:函数由 func 开始声明
- function_name:函数名称,函数名和参数列表一起构成了函数签名。
- parameter list:参数列表,参数就像一个占位符,当函数被调用时,你可以将值传递给参数,这个值被称为实际参数。参数列表指定的是参数类型、顺序、及参数个数。参数是可选的,也就是说函数也可以不包含参数。
- return_types:返回类型,函数返回一列值。return_types 是该列值的数据类型。有些功能不需要返回值,这种情况下 return_types 不是必须的。
- 函数体:函数定义的代码集合。
函数返回多个值
Go 函数可以返回多个值,例如:
package main import "fmt" func swap(x, y string) (string, string) { return y, x } func main() { a, b := swap("Mahesh", "Kumar") fmt.Println(a, b) }
Go 语言函数作为值
实例为:
package main import ( "fmt" "math" ) func main(){ /* 声明函数变量 */ getSquareRoot := func(x float64) float64 { return math.Sqrt(x) } /* 使用函数 */ fmt.Println(getSquareRoot(9)) }
Go 语言函数闭包
创建了函数 getSequence() ,返回另外一个函数。该函数的目的是在闭包中递增 i 变量,代码如下:
package main import "fmt" func getSequence() func() int { i:=0 return func() int { i+=1 return i } } func main(){ /* nextNumber 为一个函数,函数 i 为 0 */ nextNumber := getSequence() /* 调用 nextNumber 函数,i 变量自增 1 并返回 */ fmt.Println(nextNumber()) fmt.Println(nextNumber()) fmt.Println(nextNumber()) /* 创建新的函数 nextNumber1,并查看结果 */ nextNumber1 := getSequence() fmt.Println(nextNumber1()) fmt.Println(nextNumber1()) }
执行结果为:
1 2 3 1 2
Go 语言函数方法
Go 语言中同时有函数和方法。一个方法就是一个包含了接受者的函数,接受者可以是命名类型或者结构体类型的一个值或者是一个指针。所有给定类型的方法属于该类型的方法集。语法格式如下:
func (variable_name variable_data_type) function_name() [return_type]{ /* 函数体*/ }
下面定义一个结构体类型和该类型的一个方法:
package main import ( "fmt" ) /* 定义函数 */ type Circle struct { radius float64 } func main() { var c1 Circle c1.radius = 10.00 fmt.Println("Area of Circle(c1) = ", c1.getArea()) } //该 method 属于 Circle 类型对象中的方法 func (c Circle) getArea() float64 { //c.radius 即为 Circle 类型对象中的属性 return 3.14 * c.radius * c.radius }
初始化局部和全局变量
不同类型的局部和全局变量默认值为:
数据类型 | 初始化默认值 |
---|---|
int | 0 |
float32 | 0 |
pointer | nil |
Go 语言数组
声明数组
Go 语言数组声明需要指定元素类型及元素个数,语法格式如下:
var variable_name [SIZE] variable_type
初始化数组
var balance = [5]float32{1000.0, 2.0, 3.4, 7.0, 50.0}
var balance = [...]float32{1000.0, 2.0, 3.4, 7.0, 50.0}
读取元素:balance[4] = 50.0
Go 语言向函数传递数组
方式一
形参设定数组大小:
void myFunction(param [10]int) { . . . }
方式二
形参未设定数组大小:
void myFunction(param []int) { . . . }
Go 语言指针
GO语言的指针可以去看C语言指针。
Go 语言结构体
定义结构体
结构体定义需要使用 type 和 struct 语句。struct 语句定义一个新的数据类型,结构体有中一个或多个成员。type 语句设定了结构体的名称。结构体的格式如下:
type struct_variable_type struct { member definition; member definition; ... member definition; }
一旦定义了结构体类型,它就能用于变量的声明,语法格式如下:
variable_name := structure_variable_type {value1, value2...valuen}
访问结构体成员
如果要访问结构体成员,需要使用点号 (.) 操作符,格式为:"结构体.成员名"。
Go 语言切片(Slice)
Go 语言切片是对数组的抽象。
Go 数组的长度不可改变,在特定场景中这样的集合就不太适用,Go中提供了一种灵活,功能强悍的内置类型切片("动态数组"),与数组相比切片的长度是不固定的,可以追加元素,在追加时可能使切片的容量增大。
定义切片
你可以声明一个未指定大小的数组来定义切片:
var identifier []type
切片不需要说明长度。
或使用make()函数来创建切片:
var slice1 []type = make([]type, len) 也可以简写为 slice1 := make([]type, len)
也可以指定容量,其中capacity为可选参数。
make([]T, length, capacity)
这里 len 是数组的长度并且也是切片的初始长度。
切片初始化
s :=[] int {1,2,3 }
直接初始化切片,[]表示是切片类型,{1,2,3}初始化值依次是1,2,3.其cap=len=3
s := arr[:]
初始化切片s,是数组arr的引用
s := arr[startIndex:endIndex]
将arr中从下标startIndex到endIndex-1 下的元素创建为一个新的切片
s := arr[startIndex:]
缺省endIndex时将表示一直到arr的最后一个元素
s := arr[:endIndex]
缺省startIndex时将表示从arr的第一个元素开始
s1 := s[startIndex:endIndex]
通过切片s初始化切片s1
s :=make([]int,len,cap)
通过内置函数make()初始化切片s,[]int 标识为其元素类型为int的切片
len() 和 cap() 函数
切片是可索引的,并且可以由 len() 方法获取长度。
切片提供了计算容量的方法 cap() 可以测量切片最长可以达到多少。
以下为具体实例:
package main import "fmt" func main() { var numbers = make([]int,3,5) printSlice(numbers) } func printSlice(x []int){ fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x) }
以上实例运行输出结果为:
len=3 cap=5 slice=[0 0 0]
空(nil)切片
一个切片在未初始化之前默认为 nil,长度为 0,实例如下:
package main import "fmt" func main() { var numbers []int printSlice(numbers) if(numbers == nil){ fmt.Printf("切片是空的") } } func printSlice(x []int){ fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x) }
以上实例运行输出结果为:
len=0 cap=0 slice=[] 切片是空的
切片截取
可以通过设置下限及上限来设置截取切片 [lower-bound:upper-bound],实例如下:
package main import "fmt" func main() { /* 创建切片 */ numbers := []int{0,1,2,3,4,5,6,7,8} printSlice(numbers) /* 打印原始切片 */ fmt.Println("numbers ==", numbers) /* 打印子切片从索引1(包含) 到索引4(不包含)*/ fmt.Println("numbers[1:4] ==", numbers[1:4]) /* 默认下限为 0*/ fmt.Println("numbers[:3] ==", numbers[:3]) /* 默认上限为 len(s)*/ fmt.Println("numbers[4:] ==", numbers[4:]) numbers1 := make([]int,0,5) printSlice(numbers1) /* 打印子切片从索引 0(包含) 到索引 2(不包含) */ number2 := numbers[:2] printSlice(number2) /* 打印子切片从索引 2(包含) 到索引 5(不包含) */ number3 := numbers[2:5] printSlice(number3) } func printSlice(x []int){ fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x) }
执行以上代码输出结果为:
len=9 cap=9 slice=[0 1 2 3 4 5 6 7 8] numbers == [0 1 2 3 4 5 6 7 8] numbers[1:4] == [1 2 3] numbers[:3] == [0 1 2] numbers[4:] == [4 5 6 7 8] len=0 cap=5 slice=[] len=2 cap=9 slice=[0 1] len=3 cap=7 slice=[2 3 4]
append() 和 copy() 函数
如果想增加切片的容量,我们必须创建一个新的更大的切片并把原分片的内容都拷贝过来。
下面的代码描述了从拷贝切片的 copy 方法和向切片追加新元素的 append 方法。
package main import "fmt" func main() { var numbers []int printSlice(numbers) /* 允许追加空切片 */ numbers = append(numbers, 0) printSlice(numbers) /* 向切片添加一个元素 */ numbers = append(numbers, 1) printSlice(numbers) /* 同时添加多个元素 */ numbers = append(numbers, 2,3,4) printSlice(numbers) /* 创建切片 numbers1 是之前切片的两倍容量*/ numbers1 := make([]int, len(numbers), (cap(numbers))*2) /* 拷贝 numbers 的内容到 numbers1 */ copy(numbers1,numbers) printSlice(numbers1) } func printSlice(x []int){ fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x) }
以上代码执行输出结果为:
len=0 cap=0 slice=[] len=1 cap=1 slice=[0] len=2 cap=2 slice=[0 1] len=5 cap=6 slice=[0 1 2 3 4] len=5 cap=12 slice=[0 1 2 3 4]
Go 语言范围(Range)
Go 语言中 range 关键字用于for循环中迭代数组(array)、切片(slice)、通道(channel)或集合(map)的元素。在数组和切片中它返回元素的索引值,在集合中返回 key-value 对的 key 值。(这个语言范围我也没太整明白,有详解的,望共享)
实例
package main import "fmt" func main() { //这是我们使用range去求一个slice的和。使用数组跟这个很类似 nums := []int{2, 3, 4} sum := 0 for _, num := range nums { sum += num } fmt.Println("sum:", sum) //在数组上使用range将传入index和值两个变量。上面那个例子我们不需要使用该元素的序号,所以我们使用空白符"_"省略了。有时侯我们确实需要知道它的索引。 for i, num := range nums { if num == 3 { fmt.Println("index:", i) } } //range也可以用在map的键值对上。 kvs := map[string]string{"a": "apple", "b": "banana"} for k, v := range kvs { fmt.Printf("%s -> %s\n", k, v) } //range也可以用来枚举Unicode字符串。第一个参数是字符的索引,第二个是字符(Unicode的值)本身。 for i, c := range "go" { fmt.Println(i, c) } }
以上实例运行输出结果为:
sum: 9 index: 1 a -> apple b -> banana 0 103 1 111
Go 语言Map(集合)
可以使用内建函数 make 也可以使用 map 关键字来定义 Map:
/* 声明变量,默认 map 是 nil */ var map_variable map[key_data_type]value_data_type /* 使用 make 函数 */ map_variable := make(map[key_data_type]value_data_type)
如果不初始化 map,那么就会创建一个 nil map。nil map 不能用来存放键值对
实例
下面实例演示了创建和使用map:
package main import "fmt" func main() { var countryCapitalMap map[string]string /* 创建集合 */ countryCapitalMap = make(map[string]string) /* map 插入 key-value 对,各个国家对应的首都 */ countryCapitalMap["France"] = "Paris" countryCapitalMap["Italy"] = "Rome" countryCapitalMap["Japan"] = "Tokyo" countryCapitalMap["India"] = "New Delhi" /* 使用 key 输出 map 值 */ for country := range countryCapitalMap { fmt.Println("Capital of",country,"is",countryCapitalMap[country]) } /* 查看元素在集合中是否存在 */ captial, ok := countryCapitalMap["United States"] /* 如果 ok 是 true, 则存在,否则不存在 */ if(ok){ fmt.Println("Capital of United States is", captial) }else { fmt.Println("Capital of United States is not present") } }
delete() 函数
delete() 函数用于删除集合的元素, 参数为 map 和其对应的 key。实例如下:
package main import "fmt" func main() { /* 创建 map */ countryCapitalMap := map[string] string {"France":"Paris","Italy":"Rome","Japan":"Tokyo","India":"New Delhi"} fmt.Println("原始 map") /* 打印 map */ for country := range countryCapitalMap { fmt.Println("Capital of",country,"is",countryCapitalMap[country]) } /* 删除元素 */ delete(countryCapitalMap,"France"); fmt.Println("Entry for France is deleted") fmt.Println("删除元素后 map") /* 打印 map */ for country := range countryCapitalMap { fmt.Println("Capital of",country,"is",countryCapitalMap[country]) } }
Go 语言递归函数
递归,就是在运行的过程中调用自己。不会的小伙伴去研究C语言的递归。
Go 语言类型转换
类型转换用于将一种数据类型的变量转换为另外一种类型的变量。Go 语言类型转换基本格式如下:
type_name(expression)
type_name 为类型,expression 为表达式。
Go 语言接口
Go 语言提供了另外一种数据类型即接口,它把所有的具有共性的方法定义在一起,任何其他类型只要实现了这些方法就是实现了这个接口。
实例
/* 定义接口 */ type interface_name interface { method_name1 [return_type] method_name2 [return_type] method_name3 [return_type] ... method_namen [return_type] } /* 定义结构体 */ type struct_name struct { /* variables */ } /* 实现接口方法 */ func (struct_name_variable struct_name) method_name1() [return_type] { /* 方法实现 */ } ... func (struct_name_variable struct_name) method_namen() [return_type] { /* 方法实现*/ }
实例
package main import ( "fmt" ) type Phone interface { call() } type NokiaPhone struct { } func (nokiaPhone NokiaPhone) call() { fmt.Println("I am Nokia, I can call you!") } type IPhone struct { } func (iPhone IPhone) call() { fmt.Println("I am iPhone, I can call you!") } func main() { var phone Phone phone = new(NokiaPhone) phone.call() phone = new(IPhone) phone.call() }
Go 错误处理
Go 语言通过内置的错误接口提供了非常简单的错误处理机制。
error类型是一个接口类型,这是它的定义:
type error interface { Error() string }
我们可以在编码中通过实现 error 接口类型来生成错误信息。
函数通常在最后的返回值中返回错误信息。使用errors.New 可返回一个错误信息:
func Sqrt(f float64) (float64, error) { if f < 0 { return 0, errors.New("math: square root of negative number") } // 实现 }
在下面的例子中,我们在调用Sqrt的时候传递的一个负数,然后就得到了non-nil的error对象,将此对象与nil比较,结果为true,所以fmt.Println(fmt包在处理error时会调用Error方法)被调用,以输出错误,请看下面调用的示例代码:
result, err:= Sqrt(-1) if err != nil { fmt.Println(err) }
实例
package main import ( "fmt" ) // 定义一个 DivideError 结构 type DivideError struct { dividee int divider int } // 实现 `error` 接口 func (de *DivideError) Error() string { strFormat := ` Cannot proceed, the divider is zero. dividee: %d divider: 0 ` return fmt.Sprintf(strFormat, de.dividee) } // 定义 `int` 类型除法运算的函数 func Divide(varDividee int, varDivider int) (result int, errorMsg string) { if varDivider == 0 { dData := DivideError{ dividee: varDividee, divider: varDivider, } errorMsg = dData.Error() return } else { return varDividee / varDivider, "" } } func main() { // 正常情况 if result, errorMsg := Divide(100, 10); errorMsg == "" { fmt.Println("100/10 = ", result) } // 当被除数为零的时候会返回错误信息 if _, errorMsg := Divide(100, 0); errorMsg != "" { fmt.Println("errorMsg is: ", errorMsg) } }
执行以上程序,输出结果为:
100/10 = 10 errorMsg is: Cannot proceed, the divider is zero. dividee: 100 divider: 0