Fibonacci(斐波那契数列)的第N位数的第N位数

无穷数列1,1,2,3,5,8,13,21,34,55...称为Fibonacci数列,它可以递归地定义为
F(n)=1 ...........(n=1或n=2)
F(n)=F(n-1)+F(n-2).....(n>2)
现要你来求第n个斐波纳奇数。(第1个、第二个都为1);

输入第一行是一个整数m(m<5)表示共有m组测试数据
每次测试数据只有一行,且只有一个整形数n(
输出对每组输入n,输出第n个Fibonacci数

#include<stdio.h>
long int fib(long int num){
	if(num==1||num==2){
		return 1;
	}
	else{

		return fib(num-1)+fib(num-2);
	}
}
int main()
{
	int n,i,m;
	scanf("%d",&n);
	for(i=0;i<n;i++){
	scanf("%d",&m);
	printf("%ld\n",fib(m));

}
	return 0;
	}

  

时间: 2024-10-11 08:25:25

Fibonacci(斐波那契数列)的第N位数的第N位数的相关文章

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

算法导论-求(Fibonacci)斐波那契数列算法对比

目录 1.斐波那契数列(Fibonacci)介绍 2.朴素递归算法(Naive recursive algorithm) 3.朴素递归平方算法(Naive recursive squaring) 4 .自底向上算法(Bottom-up) 5. 递归平方算法(Recursive squaring) 6.完整代码(c++) 7.参考资料 内容 1.斐波那契数列(Fibonacci)介绍 Fibonacci数列应该也算是耳熟能详,它的递归定义如上图所示. 下面2-6分别说明求取Fibonacci数列的

UVA10299- Modular Fibonacci(斐波那契数列+矩阵快速幂)

题目链接 题意:给出n和m,求出f(n) % m, f(x)为斐波那契数列. 思路:因为n挺大的,如果直接利用公式计算很有可能会TLE,所以利用矩阵快速幂求解,|(1, 1), (1, 0)| * |f(n - 1), f(n - 2)| = |f(n), f(n - 1)|,所以求f(n)相当于|f(1), f(0)|乘上n - 1次的|(1, 1), (1, 0)|. 代码: #include <iostream> #include <cstdio> #include <

fibonacci 斐波那契数列

1.小兔子繁殖问题  (有该问题的详细来由介绍) 2.台阶问题 题目:一个人上台阶可以一次上一个或者两个,问这个人上n层的台阶,一共有多少种走法. 递归的思路设计模型: i(台阶阶数)        n(走法种数)                                          组合情况 1                        1                                                         {1} 2        

poj 3070 Fibonacci (矩阵快速幂求斐波那契数列的第n项)

题意就是用矩阵乘法来求斐波那契数列的第n项的后四位数.如果后四位全为0,则输出0,否则 输出后四位去掉前导0,也...就...是...说...输出Fn%10000. 题目说的如此清楚..我居然还在%和/来找后四位还判断是不是全为0还输出时判断是否为0然后 去掉前导0.o(╯□╰)o 还有矩阵快速幂的幂是0时要特判. P.S:今天下午就想好今天学一下矩阵乘法方面的知识,这题是我的第一道正式接触矩阵乘法的题,欧耶! #include<cstdio> #include<iostream>

递归:阶乘、斐波那契数列

阶乘 public static void main(String[] args) { System.out.println(factorial(5));; } //factorial 阶乘 public static long factorial(int n) { if (n == 1) { return 1; } return n*factorial(n-1); } 阶乘画图理解 斐波那契数列递归实现: public static void main(String[] args) { Sys

递归思想之---斐波拉契数列

斐波那契数列中的递归思想 ??如果上述的分析都明白了,那就说明你已掌握了递归,但为了加深对递归的理解,我们再来看一个思考题(来自程序员的数学思考题),题目是这样的,假如动物中有一种特殊的种类,它出生2天后就开始以每天1只的速度繁殖后代.假设第1天,有1只这样的动物(该动物刚出生,从第3天开始繁殖后代).那么到第11天,共有多少只呢? 我们先来按一般顺序思考,先不要考虑第11天,先从第1天开始,看能不能找出规律: [第1天]只有1只动物 [第2天]只有1只动物,还没有繁殖后代,总量为1 [第3天]

如何使用Python输出一个[斐波那契数列]

如何使用Python输出一个[斐波那契数列]Fibonacci 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列". 例子:1.1.2.3.5.8.13.21.34.-- 解法1: 100以内的斐波那契数列 x=1 y=1 print(x,end=" ") print(y,end=" ") while(True)

SQL Server -&gt;&gt; 斐波那契数列(Fibonacci sequence)

斐波那契数列(Fibonacci sequence)的T-SQL实现 ;WITH T AS ( SELECT 1 AS NUM, CAST(1 AS BIGINT) AS curr, CAST(NULL AS BIGINT) AS prv UNION ALL SELECT curr.NUM + 1 AS NUM, CAST(CASE WHEN prv IS NULL THEN curr ELSE curr + prv END AS BIGINT) AS curr, CAST(curr AS BI

Java实现斐波那契数列Fibonacci

import java.util.Scanner; public class Fibonacci { public static void main(String[] args) { // TODO Auto-generated method stub Scanner in=new Scanner(System.in); System.out.println("斐波那契数列的个数是:"); int total=in.nextInt(); System.out.println("