【转】树链剖分

“在一棵树上进行路径的修改、求极值、求和”乍一看只要线段树就能轻松解决,实际上,仅凭线段树是不能搞定它的。我们需要用到一种貌似高级的复杂算法——树链剖分。

树链,就是树上的路径。剖分,就是把路径分类为重链和轻链。
    记siz[v]表示以v为根的子树的节点数,dep[v]表示v的深度(根深度为1),top[v]表示v所在的链的顶端节点,fa[v]表示v的父亲,son[v]表示与v在同一重链上的v的儿子节点(姑且称为重儿子),w[v]表示v与其父亲节点的连边(姑且称为v的父边)在线段树中的位置。只要把这些东西求出来,就能用logn的时间完成原问题中的操作。

重儿子:siz[u]为v的子节点中siz值最大的,那么u就是v的重儿子。
    轻儿子:v的其它子节点。
    重边:点v与其重儿子的连边。
    轻边:点v与其轻儿子的连边。
    重链:由重边连成的路径。
    轻链:轻边。

剖分后的树有如下性质:
    性质1:如果(v,u)为轻边,则siz[u] * 2 < siz[v];
    性质2:从根到某一点的路径上轻链、重链的个数都不大于logn。

算法实现:
    我们可以用两个dfs来求出fa、dep、siz、son、top、w。
    dfs_1:把fa、dep、siz、son求出来,比较简单,略过。
    dfs_2:⒈对于v,当son[v]存在(即v不是叶子节点)时,显然有top[son[v]] = top[v]。线段树中,v的重边应当在v的父边的后面,记w[son[v]] = totw+1,totw表示最后加入的一条边在线段树中的位置。此时,为了使一条重链各边在线段树中连续分布,应当进行dfs_2(son[v]);
           ⒉对于v的各个轻儿子u,显然有top[u] = u,并且w[u] = totw+1,进行dfs_2过程。
           这就求出了top和w。
    将树中各边的权值在线段树中更新,建链和建线段树的过程就完成了。

修改操作:例如将u到v的路径上每条边的权值都加上某值x。
    一般人需要先求LCA,然后慢慢修改u、v到公共祖先的边。而高手就不需要了。
    记f1 = top[u],f2 = top[v]。
    当f1 <> f2时:不妨设dep[f1] >= dep[f2],那么就更新u到f1的父边的权值(logn),并使u = fa[f1]。
    当f1 = f2时:u与v在同一条重链上,若u与v不是同一点,就更新u到v路径上的边的权值(logn),否则修改完成;
    重复上述过程,直到修改完成。

求和、求极值操作:类似修改操作,但是不更新边权,而是对其求和、求极值。
    就这样,原问题就解决了。鉴于鄙人语言表达能力有限,咱画图来看看:


    如右图所示,较粗的为重边,较细的为轻边。节点编号旁边有个红色点的表明该节点是其所在链的顶端节点。边旁的蓝色数字表示该边在线段树中的位置。图中1-4-9-13-14为一条重链。

当要修改11到10的路径时。
    第一次迭代:u = 11,v = 10,f1 = 2,f2 = 10。此时dep[f1] < dep[f2],因此修改线段树中的5号点,v = 4, f2 = 1;
    第二次迭代:dep[f1] > dep[f2],修改线段树中10--11号点。u = 2,f1 = 2;
    第三次迭代:dep[f1] > dep[f2],修改线段树中9号点。u = 1,f1 = 1;
    第四次迭代:f1 = f2且u = v,修改结束。

题目:spoj375、USACO December Contest Gold Divison, "grassplant"。
    **spoj375据说不“缩行”情况下最短的程序是140+行,我的是128行。

附spoj375程序(C++):

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <string.h>
using namespace std;
const int maxn = 10010;
struct Tedge
{ int b, next; } e[maxn * 2];
int tree[maxn];
int zzz, n, z, edge, root, a, b, c;
int d[maxn][3];
int first[maxn], dep[maxn], w[maxn], fa[maxn], top[maxn], son[maxn], siz[maxn];
char ch[10];

void insert(int a, int b, int c)
{
     e[++edge].b = b;
     e[edge].next = first[a];
     first[a] = edge;
}

void dfs(int v)
{
     siz[v] = 1; son[v] = 0;
     for (int i = first[v]; i > 0; i = e[i].next)
         if (e[i].b != fa[v])
         {
             fa[e[i].b] = v;
             dep[e[i].b] = dep[v]+1;
             dfs(e[i].b);
             if (siz[e[i].b] > siz[son[v]]) son[v] = e[i].b;
             siz[v] += siz[e[i].b];
         }
}

void build_tree(int v, int tp)
{
     w[v] = ++ z; top[v] = tp;
     if (son[v] != 0) build_tree(son[v], top[v]);
     for (int i = first[v]; i > 0; i = e[i].next)
         if (e[i].b != son[v] && e[i].b != fa[v])
             build_tree(e[i].b, e[i].b);
}

void update(int root, int lo, int hi, int loc, int x)
{
     if (loc > hi || lo > loc) return;
     if (lo == hi)
     { tree[root] = x; return; }
     int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
     update(ls, lo, mid, loc, x);
     update(rs, mid+1, hi, loc, x);
     tree[root] = max(tree[ls], tree[rs]);
}

int maxi(int root, int lo, int hi, int l, int r)
{
     if (l > hi || r < lo) return 0;
     if (l <= lo && hi <= r) return tree[root];
     int mid = (lo + hi) / 2, ls = root * 2, rs = ls + 1;
     return max(maxi(ls, lo, mid, l, r), maxi(rs, mid+1, hi, l, r));
}

inline int find(int va, int vb)
{
     int f1 = top[va], f2 = top[vb], tmp = 0;
     while (f1 != f2)
     {
           if (dep[f1] < dep[f2])
           { swap(f1, f2); swap(va, vb); }
           tmp = max(tmp, maxi(1, 1, z, w[f1], w[va]));
           va = fa[f1]; f1 = top[va];
     }
     if (va == vb) return tmp;
     if (dep[va] > dep[vb]) swap(va, vb);
     return max(tmp, maxi(1, 1, z, w[son[va]], w[vb]));  //
}

void init()
{
     scanf("%d", &n);
     root = (n + 1) / 2;
     fa[root] = z = dep[root] = edge = 0;
     memset(siz, 0, sizeof(siz));
     memset(first, 0, sizeof(first));
     memset(tree, 0, sizeof(tree));
     for (int i = 1; i < n; i++)
     {
         scanf("%d%d%d", &a, &b, &c);
         d[i][0] = a; d[i][1] = b; d[i][2] = c;
         insert(a, b, c);
         insert(b, a, c);
     }
     dfs(root);
     build_tree(root, root);    //
     for (int i = 1; i < n; i++)
     {
         if (dep[d[i][0]] > dep[d[i][1]]) swap(d[i][0], d[i][1]);
         update(1, 1, z, w[d[i][1]], d[i][2]);
     }
}

inline void read()
{
     ch[0] = ‘ ‘;
     while (ch[0] < ‘C‘ || ch[0] > ‘Q‘) scanf("%s", &ch);
}

void work()
{
     for (read(); ch[0] != ‘D‘; read())
     {
         scanf("%d%d", &a, &b);
         if (ch[0] == ‘Q‘) printf("%dn", find(a, b));
                      else update(1, 1, z, w[d[a][1]], b);
     }
}

int main()
{
    for (scanf("%d", &zzz); zzz > 0; zzz--)
    {
        init();
        work();
    }
    return 0;
}

【转】树链剖分

时间: 2024-10-10 00:18:58

【转】树链剖分的相关文章

BZOJ 2243: [SDOI2011]染色 树链剖分

2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1886  Solved: 752[Submit][Status] Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”.“222”和“1”. 请你写一个程序依次完成这m个操作. In

bzoj 2243: [SDOI2011]染色 线段树区间合并+树链剖分

2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 7925  Solved: 2975[Submit][Status][Discuss] Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”.“222”和“1”. 请你写一个程序依次完

bzoj3694: 最短路(树链剖分/并查集)

bzoj1576的帮我们跑好最短路版本23333(双倍经验!嘿嘿嘿 这题可以用树链剖分或并查集写.树链剖分非常显然,并查集的写法比较妙,涨了个姿势,原来并查集的路径压缩还能这么用... 首先对于不在最短路径树上的边x->y,设t为最短路径树上lca(x,y),则t到y上的路径上的点i到根的距离都可以用h[x]+dis[x][y]+h[y]-h[i](h[]为深度)来更新,因为h[i]一定,只要让h[x]+dis[x][y]+h[y]最小就行,这里用树剖直接修改整条链上的数,就可以过了. 并查集的

洛谷 P3384 【模板】树链剖分

题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和 操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z 操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和 输入输出格式 输入格式: 第一行包含4个正整数N.M.R.P,分别表示树的结点个数.操作个数

bzoj1036 树的统计(树链剖分+线段树)

1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 15120  Solved: 6141[Submit][Status][Discuss] Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I

SPOJ QTREE Query on a tree ——树链剖分 线段树

[题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define maxn 20005 int T,n,fr[maxn],h[maxn],to[maxn],ne[maxn]

树链剖分简(单)介(绍)

树链剖分可以算是一种数据结构(一大堆数组,按照这个意思,主席树就是一大堆线段树).将一棵树分割成许多条连续的树链,方便完成一下问题: 单点修改(dfs序可以完成) 求LCA(各种乱搞也可以) 树链修改(修改任意树上两点之间的唯一路径) 树链查询 (各种操作)  前两个内容可以用其他方式解决,但是下面两种操作倍增.st表,dfs序就很难解决(解决当然可以解决,只是耗时长点而已).下面开始步入正题. 树链剖分的主要目的是分割树,使它成一条链,然后交给其他数据结构(如线段树,Splay)来进行维护.常

bzoj1146整体二分+树链剖分+树状数组

其实也没啥好说的 用树状数组可以O(logn)的查询 套一层整体二分就可以做到O(nlngn) 最后用树链剖分让序列上树 1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 using namespace std; 6 inline int read() 7 { 8 int x=0,f=1,ch=getchar(); 9 while(ch<

BZOJ 1036: [ZJOI2008]树的统计Count [树链剖分]

1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 14302  Solved: 5779[Submit][Status][Discuss] Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I

树链剖分

本蒟蒻今天开始刷BZOJ 本来准备愉快的水完降序排列的一波题  ..结果..我果然是个弱菜 题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1036 上网搜了一下,可以用树链剖分解决,正好我不会,就学了一下. 深吸一口,我要开始转述了, 树链剖分可以把树的边分为轻.重边 重边:与子树子节点最多的子节点连成的边: 轻边:不是重边的边 发现这样干讲仿佛说的都是些没营养的东西,还是让我们结合题目代码来说吧(微笑微笑) [cpp] view p