对话机器学习大神 Michael Jordan:解析领域中各类模型

乔丹教授(Michael I. Jordan)教授是机器学习领域神经网络的大牛,他对深度学习、神经网络有着很浓厚的兴趣。因此,很多提问的问题中包含了机器学习领域的各类模型,乔丹教授对此一一做了解释和展望。

首先被提到的就是经典的贝叶斯非参数模型。今年暑假,乔丹教授在Como开设了贝叶斯非参数模型的课程。这个课程里面,他花了很大一部分时间用来介绍完全随机测度的主题和把它们运用在模型中的好处。有一些提问者参与了这个课程,并且提出了一些问题。总结来说就是三个问题:

  1. 是否有一些其他的或者特殊的抽象数学概念和方法,能够让我们用来从中收益并且整合进机器学习领域?其中一个跨学科例子就是Hybrid MCMC,原型基于动态系统理论。
  2. 如今大部分贝叶斯非参数都被应用在了聚类/混合模型、主题模型和图模型。非参数应用的下一个前沿方向将在哪里?
  3. 目前机器学习领域的处理问题的方式非常一般,仅仅是套用很多普遍的模型然后进行大量的计算。这个趋势会继续流行下去吗?是否有希望出现一些不需要那么多数据的方法,比如核心集、Matrix Sketching、随机映射或者主动学习?

乔丹教授非常关心这类问题,特别是第一问。实际上他花了职业生涯的大部分时间尝试将各种数学领域已有的想法应用到新的情景中去,并且乔丹的努力很有成效。但是,他所得到的失败远远大于成功。所以乔丹教授很犹豫是否在这里给出一些很具体的建议,因为这很有可能变成傻子的金子而不是真正的建议。

乔丹教授认为完全随机测度(CRMs)仍然是将来的热点。它们大部分被用在了获得归一化的随机测度(见James, Lijoi and Pruenster的工作),比如随机概率测度。

把思想从归一化常量中解放出来也值得考虑,CRMs就是做的这件事。同时,注意到副词“完全”指的是有用的独立属性,暗指那些还未被发明出来的、分而治之的算法。

通常,CRMs对于非参数就好比指数族对于参数模型的意义,并且乔丹教授现在正在和Tamara Broderick 与 Ashia Wilson合作一篇文章,尝试将这个想法带给大家。注意到指数族在几十年前Larry Brown的开创性专著发型之后已经无人使用了,但是它们仍然还有很多后续发展,比如乔丹和Martin Wainwright的著作,研究了指数族的共轭对耦。

至于非参数应用的下一代前沿方向,乔丹认为这将主要从实际生活中获得实际应用的灵感。在实际生活中,很少一部分人在大规模数据上尝试过贝叶斯非参数模型。一旦实际上开始使用并且取得了一定的成功,这块领域将能够很快发展。

最后,乔丹提到他是核心集、Matrix Sketching、随机映射的忠实粉丝,并且把它们作为基本工具,相信它们仍然会持续发展,因为研究人员已经开始建立更加复杂的、流水线结构。但其实,它们并不是不太需要数据的方法。实际上,它们为整个系统提供了一个可测量的节点让其能够加入更多的数据并且保持准确性。

第二个被提到的是概率图模型。概率图模型(PGMs)是表现联合概率分布结构的一种方式,特别是在条件独立关系和因数分解方面。通过这种方式能够很有效的抓住一些结构的方面,但是仍然有很多其他的联合概率分布的结构是PGM不能够派上用场的。没有一个工具在所有领域中都是有用的,每一个工具都有它自己的适用范围。

在另外一个方面,尽管我们有着限制,但在PGM方面仍然有着很多需要探索。注意到大部分广泛适用的图模型都是链状的,比如HMM模型,CRF也是。在链之外还有树状的,也有很多工作可以继续。

乔丹教授提到,在2003年他介绍LDA模型的时候,仍然能够记得UAI社区的已经在树领域做了很多年工作的研究员说道:“这个模型只是一个树,这怎么值得去研究的?”但是他仍然被以树为基础的结构的研究的进展所激励着,特别是在三个大领域:有机进化生物领域、文档建模还有自然语言处理。比如乔丹最近和Alex Bouchard-Cote一起研究进化树,其节点都是变长的字符串,并且沿着树的边扩展,需要人来推出这棵树和字符串。在主题模型领域,他对于多分辨率的主题树非常感兴趣,这是一个非常有前途的方法,超过了LDA。John Paisley,Chong Wang,Dave Blei和乔丹已经推出了一种网状HDP结构,在这个结构中,文档不再是一个向量而是一个向量的多路下降树。最近,Percy Liang,Dan Klein和乔丹正在主攻自然语言语义的一个研究方向,其中基础的模型是一棵树,但是节点可能是已经被赋值了,这样经典约束满足可能解决一些语义的一阶方面的问题。

最后值得详细说明的一件事,没有理由不能让图模型里面的节点来代表随机集,或随机组合结构,或者一般随机过程。在随机向量的经典设置里面,因子分解可能是很有用的。乔丹说道,在这方面还有很多可以值得探索。

感谢郭蕾对本文的审校。

给InfoQ中文站投稿或者参与内容翻译工作,请邮件至[email protected]。也欢迎大家通过新浪微博(@InfoQ)或者腾讯微博(@InfoQ)关注我们,并与我们的编辑和其他读者朋友交流。

时间: 2024-11-15 02:44:05

对话机器学习大神 Michael Jordan:解析领域中各类模型的相关文章

机器学习大神 Michael Jordan:人工智能还只是一个雏形

原文链接 说到人工智能,不得不提到一个关键词就是机器学习,机器学习领域的突破和爆发,使人工智能领域有了飞跃的发展.人工智能的时候会特别关注机器学习领域将会以什么层级的速度向未来发展?在 2017 腾讯"云+未来"峰会上,机器学习大神 Michael Jordan 教授从人工智能发展史出发全面阐述机器学习现状及未来的挑战. 60年代,"智能"这个词刚刚出现,机器人进入到人的世界,被定义为像一个人存在.到80.90年代,"智能"走向另一种趋势,演变为

对话机器学习大神Yoshua Bengio(下)

对话机器学习大神Yoshua Bengio(下) Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域.他连同Geoff Hinton老先生以及 Yann LeCun(燕乐存)教授,缔造了2006年开始的深度学习复兴.他的研究工作主要聚焦在高级机器学习方面,致力于用其解决人工智能问题.他是仅存的几个仍然全身心投入在学术界的深度学习教授之一,好多其他教授早已投身于工业界,加入了谷歌或Facebook公司. 作为机器学习社区的活跃者,Yoshua Bengio教授在

对话机器学习大神Yoshua Bengio(上)

Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域.他连同Geoff Hinton老先生以及 Yann LeCun(燕乐存)教授,缔造了2006年开始的深度学习复兴.他的研究工作主要聚焦在高级机器学习方面,致力于用其解决人工智能问题.他是仅存的几个仍然全身心投入在学术界的深度学习教授之一,好多其他教授早已投身于工业界,加入了谷歌或Facebook公司. 作为机器学习社区的活跃者,Yoshua Bengio教授在美国东部时间2月27日下午一点到两点,在著名社区R

那位大神帮忙JAVA解析JSON

============问题描述============ { "address": "CN|\u5e7f\u4e1c|\u6df1\u5733|None|UNICOM|None|None", "content": { "address": "\u5e7f\u4e1c\u7701\u6df1\u5733\u5e02", "address_detail": { "city"

MySQL---数据库从入门走向大神系列(八)-在java中执行MySQL的存储过程

http://blog.csdn.net/qq_26525215/article/details/52143733 在上面链接的博客中,写了如何用MySQL语句定义和执行存储过程 Java执行存储过程: 准备表stud: 列类型分别为: varchar,varchar,int 定义的存储过程分别为: p1:-无参 delimiter && create procedure p1() begin insert into stud values('P100','小李',43); select

jquery零散小结(公司大神不吝赐教,从话语中零散记录)

$(document).ready(function () { $("#chongzhi").click(function () { $(".table_1").find("input:not([disabled]),textarea").val(""); }); }); 这是一个简单的重置功能,其中,find(input,textarea)方法是查找,里面的input,textarea是标签类型.:用在表情后面跟方法,用来限

为何你跟着滴滴D8级前端大神撸代码,技术却依旧原地踏步?

引子 听说最近有很多小伙伴,热衷于在慕课网上学习各种前端实战教程,并以完成项目为奋斗目标.比如本文接下来要提到的<Vue2.0高级实战之开发移动端音乐App>,这门课程的传授者是来自滴滴D8级的前端大神黄轶,当然也是我推崇的行业偶像之一. 在这里既然提到了Vue这门渐进式的前端框架,我就不得不感慨一下,最近两年,Vue.js在国内的发展可谓是如日中天,红透大江南北(当然功劳也少不了尤雨溪前段时间在上海,北京的演讲,为之宣传布道). 光我从掘金,简书,GitHub等平台上看到的相关文章或个人项目

ScrollView嵌套ListView的滑动冲突问题,是看大神的方法的,作为学习以后用的到

在工作中,曾多次碰到ScrollView嵌套ListView的问题,网上的解决方法有很多种,但是杂而不全.我试过很多种方法,它们各有利弊. 在这里我将会从使用ScrollView嵌套ListView结构的原因.这个结构碰到的问题.几种解决方案和优缺点比较,这4个方面来为大家阐述.分析.总结. 实际上不光是ListView,其他继承自AbsListView的类也适用,包括ExpandableListView.GridView等等,为了方便说明,以下均用ListView来代表. 大神就是牛,给出了好

大神必修课系列之java 分布式架构的原理解析

分布式术语 1.1. 异常 服务器宕机 内存错误.服务器停电等都会导致服务器宕机,此时节点无法正常工作,称为不可用. 服务器宕机会导致节点失去所有内存信息,因此需要将内存信息保存到持久化介质上. 网络异常 有一种特殊的网络异常称为--网络分区 ,即集群的所有节点被划分为多个区域,每个区域内部可以通信,但是区域之间无法通信. 磁盘故障 磁盘故障是一种发生概率很高的异常. 使用冗余机制,将数据存储到多台服务器. 1.2. 超时 在分布式系统中,一个请求除了成功和失败两种状态,还存在着超时状态. 可以