POJ 1265 Area POJ 2954 Triangle Pick定理

Area

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5227   Accepted: 2342

Description

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area.

 
Figure 1: Example area. 
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.

Input

The first line contains the number of scenarios. 
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy?of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units.

Output

The output for every scenario begins with a line containing 揝cenario #i:? where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.

Sample Input

2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3

Sample Output

Scenario #1:
0 4 1.0

Scenario #2:
12 16 19.0

Source

Northwestern Europe 2001

题目大意:给定m个点,注意这里不是直接给的坐标,而是给的由前一个点变化多少,所以一定要看清楚题意,都怪自己英语太差,所以,搞了好久都不知道第一个样例怎么出来的。知道这个之后就是将输入来的“坐标”转化为真正的坐标了,第一个点从(0, 0)开始比较好算,一般选择这个。 这个题用到的定理或者说是知识点说一下:

1. Pick定理:给定顶点座标均是整点(或正方形格点)的简单多边形,皮克定理说明了其面积A和内部格点数目i、边上格点数目b的关系:A = i + b/2 - 1。

2. GCD(x, y)求一条线穿过的点数:一条线穿过的点格子的点的个数,这句话讲的比较通俗,我看网上有说覆盖的点的个数,刚开始没怎么理解,后来发现意思就是这条线能穿过多少个点,除了起点之外的,就是说假如中间一个点都没穿过,只有两个端点的话,那么它穿过的点就是1,除了起点之外,就1个。其中x是这条线在x轴上的投影,y是在y轴上的投影长度。

3. 叉积的几何意义:多边形的面积=顺序定点的叉积之和

我的代码:

#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
const int maxn = 105;
struct point{
    int x, y;
};
point p[maxn];
int n;
int x_multi(const point p1, const point p2)
{
    return (p1.x * p2.y - p2.x * p1.y);
}
int gcd(int a, int b)
{
    return b == 0 ? a : gcd(b, a % b);
}
int main()
{
    int t;
    scanf("%d", &t);
    int kase = 0;
    while (t--)
    {
        scanf("%d", &n);
        p[0].x = p[0].y = 0;
        int t1, t2;
        for (int i = 1; i <= n; i++)
        {
            scanf("%d %d", &t1, &t2);
            p[i].x = p[i - 1].x + t1;
            p[i].y = p[i - 1].y + t2;
        }
        int area = 0;
        int outside = 0;
        for (int i = 1; i < n; i++)
        {
            area += x_multi(p[i], p[i + 1]);
            outside += gcd(abs(p[i].x - p[i + 1].x), abs(p[i].y - p[i + 1].y));
        }
        area += x_multi(p[n], p[1]);
        outside += gcd(abs(p[n].x - p[1].x), abs(p[n].y - p[1].y));
        if (area < 0)
            area = -area;
        int inside = area + 2 - outside;
        inside /= 2;
        printf("Scenario #%d:\n", ++kase);
        if (area % 2 == 0)//如果在边界上的定点个数为偶数,面积就是整数
        {
            printf("%d %d %d.0\n\n", inside, outside, area / 2);
        }
        else//反之就是小数
            printf("%d %d %d.5\n\n", inside, outside, area / 2);
    }

    return 0;
}

下面是POJ 2954的代码,原题就不粘了,大意:给三角形的三个点的坐标,求三角形内有多少个点。思路还是Pick定理

AC代码

/*************************************************************************
    > File Name:            poj_2954.cpp
    > Author:               Howe_Young
    > Mail:                 [email protected]
    > Created Time:         2015年04月17日 星期五 20时26分14秒
 ************************************************************************/

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <cstdio>

using namespace std;
struct point{
    int x, y;
};
int x_multi(const point p1, const point p2, const point p3)
{
    return ((p3.x - p1.x) * (p2.y - p1.y) - (p2.x - p1.x) * (p3.y - p1.y));
}
int gcd(int a, int b)
{
    return b == 0 ? a : gcd(b, a % b);
}
int main()
{
    point p1, p2, p3;
    while (~scanf("%d %d %d %d %d %d", &p1.x, &p1.y, &p2.x, &p2.y, &p3.x, &p3.y) && (p1.x || p2.x || p3.x || p1.y || p2.y || p3.y))
    {
        int area = x_multi(p1, p2, p3);//这里的area是两倍的area,因为面积没有除以2
        if (area < 0)
            area = -area;
        int on_edge = 0;
        on_edge += gcd(abs(p1.x - p2.x), abs(p1.y - p2.y));
        on_edge += gcd(abs(p1.x - p3.x), abs(p1.y - p3.y));
        on_edge += gcd(abs(p2.x - p3.x), abs(p2.y - p3.y));
        int inside = area + 2 - on_edge;//这个就是pick公式两边同时×2
        inside /= 2;
        printf("%d\n", inside);
    }
    return 0;
}

时间: 2024-10-05 07:40:22

POJ 1265 Area POJ 2954 Triangle Pick定理的相关文章

poj 1265 Area (Pick定理+求面积)

链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4969   Accepted: 2231 Description Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionag

POJ 1265 Area

Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4713   Accepted: 2129 Description Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new resear

poj 1265 Area 面积+多边形内点数

Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5861   Accepted: 2612 Description Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new resear

poj 1265 Area(pick 定理)

链接:poj 1265 题意:从原点出发.给出一些dx,dy移动增量,终于形成一个多边形, 求多边形内部的格点数目,边上的格点数目 .以及面积. 补充知识: 1.以格子点为顶点的线段.覆盖的点的个数为gcd(|dx|,|dy|).当中,|dx|,|dy|分别为线段横向增量和纵向增量. 2.Pick定理:设平面上以格子点为顶点的多边形的内部点个数为a.边上点个数为b.面积为S,则 S = a + b/2 -1. 3.随意一个多边形的面积等于以多边形边上的某点为固定点.按顺序求其余点相邻两个点与该点

poj 1265 Area(Pick定理)

Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5666   Accepted: 2533 Description Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new resear

poj 1265 Area Pick定理

题目链接 pick定理: 一个计算点阵中顶点在格点上的多边形面积公式:S=a+b÷2-1,其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积 知道这个这题就没有难度了. #include <iostream> #include <vector> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include &

POJ 2954 Triangle (皮克定理, 三角形叉乘求面积)

Triangle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5303 Accepted: 2297 Description A lattice point is an ordered pair (x, y) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lat

POJ 1265 Area Pick公式

题目大意:给出一个多边形的轮廓(以边的向量形式给出),求:1.有多少个整点在这个图形里面,2.有多少个点在图形内部,3.图形的面积是多少. 思路:首先明确Pick公式: 公式意义并不是让我们求出这个多边形的面积是多大,一是因为面积没必要用Pick公式求,二是没法求出多边形中间有多少整点.但是面积可以用叉积来求,多边形边上的整点可以用gcd来求,这样经过稍微的变形,就可以求解多边形中间有多少个整点了. CODE(c++AC,g++WA,求高人指点): #include <cstdio> #inc

poj 2954 Triangle(Pick定理)

链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5043   Accepted: 2164 Description A lattice point is an ordered pair (x, y) where x and y are both integers. Given the coordinates of the vertices