寒假 D3 D Modular Inverse

Modular Inverse


Time Limit: 2 Seconds                                     Memory Limit: 65536 KB


The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1x (mod m). This is equivalent to ax≡1 (mod m).

Input

There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

Output

For each test case, output the smallest positive x. If such x doesn‘t exist, output "Not Exist".

Sample Input

3
3 11
4 12
5 13

Sample Output

4
Not Exist
8
#include<cstdio>
int gcd(int a,int b)
{
    return b==0?a:gcd(b,a%b);
}
int main()
{
    int i,j,k;
    int a,m;
   int T;
   scanf("%d",&T);
   while(T--)
   {
       scanf("%d%d",&a,&m);
      if(gcd(a,m)!=1) {printf("Not Exist\n");continue;}
      //排位赛的时候一直在这里wa掉,谨记:
      //a三b(mod m) 是同余  即:a mod m == b mod m
      //可表示成 a=b+m*k  其中k是从 0 开始
      for(k=0;k<=1000;k++)
      {
          if((m*k+1)%a==0) {printf("%d\n",(m*k+1)/a);break;}
      }
   }
   return 0;
}
时间: 2024-10-01 04:09:23

寒假 D3 D Modular Inverse的相关文章

ZOJ 4712: Modular Inverse

Modular Inverse ///@author Sycamore, ZJNU; ///@date 8/6/2017 ///@ref stanford-acm-master #include<bits/stdc++.h> using namespace std; typedef long long ll; int mod(int a, int b) { return ((a%b) + b) % b; } int extended_euclid(int a, int b, int &

Modular Inverse(模逆元,扩展欧几里德)

Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases. Th

Modular Inverse(zoj3609+欧几里德)

Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases. Th

ZOJ 3609 Modular Inverse (水题)

Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases. Th

浙江2012年省赛J题 Modular Inverse

Modular Inverse Time Limit: 2000MS   Memory Limit: 65535KB   64bit IO Format: Submit Status Description The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). I

ZOJ 3609 Modular Inverse

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609 题面: Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m).

ZOJ 3609 Modular Inverse 解线性模方程

点击打开链接 Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test ca

Modular Inverse(扩展欧几里得)

Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases. Th

ZOJ 3609 Modular Inverse(扩展欧几里德)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m). Input There are multiple test cases.