BZOJ4259 : 残缺的字符串

假设字符串是从第0位开始的,那么对于两个长度都为n的字符串A,B,定义距离函数\[dis(A,B)=\sum_{i=0}^{n-1}(A[i]-B[i])^2[A[i]!=‘*‘][B[i]!=‘*‘]\]

若把*号都设置为0,那么有\[dis(A,B)=\sum_{i=0}^{n-1}(A[i]-B[i])^2A[i]B[i]\]

如果$dis(A,B)=0$,那么A和B完全匹配。

对于这个问题,假设我们枚举B的末尾位置i,设$f[i]=dis(A,B[i-m+1,i])$,那么B的这一个子串与A完全匹配,有

\[f[i]=\sum_{j=0}^{m-1}(A[j]-B[i-m+1+j])^2A[j]B[i-m+1+j]=0\]

如果把A串翻转,并在后面不断补0直至和B串等长的话,那么有

\[\begin{eqnarray*}
f[i]&=&\sum_{j=0}^i(A[j]-B[i-j])^2A[j]B[i-j]\\
&=&\sum_{j=0}^i(A[j]^2-2A[j]B[i-j]+B[i-j]^2)A[j]B[i-j]\\
&=&\sum_{j=0}^iA[j]^3B[i-j]-2\sum_{j=0}^iA[j]^2B[i-j]^2+\sum_{j=0}^iA[j]B[i-j]^3
\end{eqnarray*}\]

显然可以分成三段做FFT求出所有的f[i],时间复杂度为$O(n\log n)$。

#include<cstdio>
#include<cmath>
#include<algorithm>
#define N 1048576
using namespace std;
char sa[N],sb[N];int n,m,i,j,k,a[N],b[N],ans,q[N];
struct comp{
  double r,i;comp(double _r=0,double _i=0){r=_r;i=_i;}
  comp operator+(const comp&x){return comp(r+x.r,i+x.i);}
  comp operator-(const comp&x){return comp(r-x.r,i-x.i);}
  comp operator*(const comp&x){return comp(r*x.r-i*x.i,r*x.i+i*x.r);}
}A[N],B[N],C[N];
const double pi=acos(-1.0);
void FFT(comp*a,int n,int t){
  for(int i=1,j=0;i<n-1;i++){
    for(int s=n;j^=s>>=1,~j&s;);
    if(i<j)swap(a[i],a[j]);
  }
  for(int d=0;(1<<d)<n;d++){
    int m=1<<d,m2=m<<1;
    double o=pi/m*t;comp _w(cos(o),sin(o));
    for(int i=0;i<n;i+=m2){
      comp w(1,0);
      for(int j=0;j<m;j++){
        comp &A=a[i+j+m],&B=a[i+j],t=w*A;
        A=B-t;B=B+t;w=w*_w;
      }
    }
  }
  if(t==-1)for(int i=0;i<n;i++)a[i].r/=n;
}
int main(){
  scanf("%d%d%s%s",&m,&n,sa,sb);
  for(i=0,j=m-1;i<j;i++,j--)swap(sa[i],sa[j]);
  for(i=0;i<m;i++)if(sa[i]!=‘*‘)a[i]=sa[i]-‘a‘+1;
  for(i=0;i<n;i++)if(sb[i]!=‘*‘)b[i]=sb[i]-‘a‘+1;
  for(k=1;k<n+m;k<<=1);
  for(i=0;i<k;i++)A[i]=comp(a[i]*a[i]*a[i],0),B[i]=comp(b[i],0);
  for(FFT(A,k,1),FFT(B,k,1),i=0;i<k;i++)C[i]=C[i]+A[i]*B[i];
  for(i=0;i<k;i++)A[i]=comp(a[i],0),B[i]=comp(b[i]*b[i]*b[i],0);
  for(FFT(A,k,1),FFT(B,k,1),i=0;i<k;i++)C[i]=C[i]+A[i]*B[i];
  for(i=0;i<k;i++)A[i]=comp(a[i]*a[i],0),B[i]=comp(b[i]*b[i],0);
  for(FFT(A,k,1),FFT(B,k,1),i=0;i<k;i++)C[i]=C[i]-A[i]*B[i]*comp(2,0);
  FFT(C,k,-1);
  for(i=m-1;i<n;i++)if(C[i].r<0.5)q[++ans]=i-m+2;
  for(printf("%d\n",ans),i=1;i<ans;i++)printf("%d ",q[i]);
  if(ans)printf("%d",q[ans]);
  return 0;
}

  

时间: 2024-10-22 14:23:43

BZOJ4259 : 残缺的字符串的相关文章

Luogu P4173 残缺的字符串

P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C(x,y) =A(x)- B(y)\),若为0,表示B串中以第\(y\)个字符结尾的字符可以与A串中以\(x\)节为结尾的字符可以匹配 \(P(x) = \sum_{i = 0}^{m - 1}C(i,x - m + i + 1)\) 但是很遗憾当\(P(x)\),等于零时,只能够说明上述子串的字符

【BZOJ4259】 残缺的字符串

Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配? Input 第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B串的长度. 第二行为一个长度为m的

P4173 残缺的字符串

\(\color{#0066ff}{ 题目描述 }\) 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串\(A\)和\(B\),其中\(A\)串长度为\(m\),\(B\)串长度为\(n\).可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中\(A\)为模板串,那么现在问题来了,请回答,对于\(B\)的每一个位置\(i\),从这个位置开始连续\(m\)个字符形成的子串是否可能与\(A\)串完全匹配? \(\col

@bzoj - [email&#160;protected] 残缺的字符串

目录 @[email protected] @[email protected] @accepted [email protected] @[email protected] @[email protected] 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这

【BZOJ】4259: 残缺的字符串

[题意]给定长度为m的匹配串B和长度为n的模板串A,求B在A中出现多少次.字符串仅由小写字母和通配符" * "组成,其中通配符可以充当任意一个字符.n<=3*10^5. [算法]FFT [题解]假设模板串的数组A用0~26代表所有字符,0为通配符,匹配串的数组B同理,那么用表示差异的经典套路: $$C_n=\sum_{i=0}^{m-1}(A_{n+i}-B_i)^2*A_{n+i}*B_i$$ 那么可以看出$C_n=0$当且仅当$S_A[n,n+m-1]=S_B[0,m-1]$

P4173 残缺的字符串 fft

题意:给你两个字符串,问你第一个在第二个中出现过多少次,并输出位置,匹配时是模糊匹配*可和任意一个字符匹配 题解:fft加速字符串匹配; 假设上面的串是s,s长度为m,下面的串是p,p长度为n,先考虑没有*的情况那么\(\sum_{j=1}^m(s_{i+j}-p_j)^2=0\)就表示能够从i开始匹配,现在考虑有*的情况,我们只需要让有*的和任意字符匹配即可,那么把公式变成\(\sum_{j=1}^m(s_{i+j}-p_j)^2*s_{i+j}*p_j)=0\),但是fft正向匹配太慢了,我

[Luogu P4173]残缺的字符串 ( 数论 FFT)

题面 传送门:洛咕 Solution 这题我写得脑壳疼,我好菜啊 好吧,我们来说正题. 这题.....emmmmmmm 显然KMP类的字符串神仙算法在这里没法用了. 那咋搞啊(或者说这题和数学有半毛钱关系啊) 我们考虑把两个字符相同强行变为一个数学关系,怎么搞呢? 考虑这题是带通配符的,我们可以这样设: \(C(x,y)=(A[x]-B[y])^2*A[x]*B[y]\) 因此,我们可以看出两个字符一样当且仅当\(C(x,y)=0\) 因此,我们再设一个函数\(P(x)\)表示\(B\)串以第\

4259. 残缺的字符串

传送门 用 $FFT$ 搞字符串匹配,神仙操作.... 对于两个字符串 $A,B$,定义 $dis(A,B)=\sum_i(A_i-B_i)^2$ 显然当且仅当 $A=B$ 时,$dis(A,B)=0$ 这一题还有要求,'*' 为通配符,所以这题的 $dis(A,B)=\sum_i((A_i-B_i)^2[A_i!='*'][B_i!='*'])$ 发现这时如果设 '*' 为 $0$,则 $dis(A,B)=\sum_i((A_i-B_i)^2A_iB_i)$ 对于此题,设 $A$ 串为模板串,

luogu4173 残缺的字符串

对于一类带有通配符的字符串匹配问题,我们考虑构造匹配函数,通过匹配函数的值来判断匹配的位置. 先考虑一个不带通配符的问题:给定两个字符串\(A,B\),判断\(B\)的哪些位置能与\(A\)匹配. 除了kmp,我们同样可以考虑构造匹配函数来解决匹配问题,首先将\(A\)串翻转同时在其末尾补\(0\),构造函数\(f_i=\sum_{j=0}^i(A_i-B_{i-j})^2\),那么\(B\)中在第\(i\)个位置结尾的长度为\(|A|\)的子串能与\(A\)匹配当且仅当\(f_i=0\).将函