Walk
Time Limit: 30000/15000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 651 Accepted Submission(s): 402
Special Judge
Problem Description
I used to think I could be anything, but now I know that I couldn‘t do anything. So I started traveling.
The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph
has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.
If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn‘t contain it.
Input
The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node
a and node b.
T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.
Your answer will be accepted if its absolute error doesn‘t exceed 1e-5.
Sample Input
2 5 10 100 1 2 2 3 3 4 4 5 1 5 2 4 3 5 2 5 1 4 1 3 10 10 10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 4 9
Sample Output
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.6993317967 0.5864284952 0.4440860821 0.2275896991 0.4294074591 0.4851048742 0.4896018842 0.4525044250 0.3406567483 0.6421630037
Source
2014 ACM/ICPC Asia Regional Anshan Online
Recommend
hujie | We have carefully selected several similar problems for you: 5153 5152 5151 5150 5149
此题的状态是想到了,但是含义没搞对,本来想把到达某个点的概率求出来,然后用1去减就是答案,但是是不对的,因为那部分概率是有牵连的
设dp[i][j] 表示走了j步,目前在节点i,且路径中不含节点u的概率
最后只要累计出节点u以外其他点的概率和就行
/************************************************************************* > File Name: hdu4945.cpp > Author: ALex > Mail: [email protected] > Created Time: 2014年12月30日 星期二 19时34分57秒 ************************************************************************/ #include <map> #include <set> #include <queue> #include <stack> #include <vector> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int D = 10010; const int N = 55; double dp[N][D]; int n, m, d; vector <int> edge[N]; void DP(int u) { for (int i = 1; i <= n; ++i) { for (int j = 0; j <= d; ++j) { dp[i][j] = 0; } } for (int i = 1; i <= n; ++i) { dp[i][0] = (1.0 / (double)n); } for (int i = 0; i < d; ++i) { for (int j = 1; j <= n; ++j) { if (j == u) { continue; } int cnt = edge[j].size(); for (int k = 0; k < cnt; ++k) { int v = edge[j][k]; if (v == u) { continue; } dp[j][i + 1] += dp[v][i] * (1.0 / cnt); } } } double ans = 0; for (int i = 1; i <= n; ++i) { if (i == u) { continue; } ans += dp[i][d]; } printf("%.10f\n", ans); } int main() { int t; int u, v; scanf("%d", &t); while (t--) { scanf("%d%d%d", &n, &m, &d); for (int i = 1; i <= n; ++i) { edge[i].clear(); } for (int i = 1; i <= m; ++i) { scanf("%d%d", &u, &v); edge[u].push_back(v); edge[v].push_back(u); } for (int i = 1; i <= n; ++i) { DP(i); } } return 0; }