题目1 : 欧拉路·一
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏。现在他们控制的角色来到了一个很大的湖边。湖上有N个小岛(编号1..N),以及连接小岛的M座木桥。每座木桥上各有一个宝箱,里面似乎装着什么道具。
湖边还有一个船夫,船夫告诉主角。他可以载着主角到任意一个岛上,并且可以从任意一个岛上再载着主角回到湖边,但是主角只有一次来回的机会。同时船夫告诉主角,连接岛屿之间的木桥很脆弱,走过一次之后就会断掉。
因为不知道宝箱内有什么道具,小Hi和小Ho觉得如果能把所有的道具收集齐肯定是最好的,那么对于当前岛屿和木桥的情况,能否将所有道具收集齐呢?
举个例子,比如一个由6个小岛和8座桥组成的地图:
主角可以先到达4号小岛,然后按照4->1->2->4->5->6->3->2->5的顺序到达5号小岛,然后船夫到5号小岛将主角接回湖边。这样主角就将所有桥上的道具都收集齐了。
输入
第1行:2个正整数,N,M。分别表示岛屿数量和木桥数量。1≤N≤10,000,1≤M≤50,000
第2..M+1行:每行2个整数,u,v。表示有一座木桥连接着编号为u和编号为v的岛屿,两个岛之间可能有多座桥。1≤u,v≤N
输出
第1行:1个字符串,如果能收集齐所有的道具输出“Full”,否则输出”Part”。
- 样例输入
-
6 8 1 2 1 4 2 4 2 5 2 3 3 6 4 5 5 6
- 样例输出
-
Full
小Ho:好麻烦啊,是我的话就随便走几步,到没路可走不就好了么!
小Hi:那样的话,收集的道具会少很多,万一以后要用到,又得重新读档了。
小Ho:好吧,让我先想想。
<两分钟后>
小Ho:这个好像是一笔画问题哎,我们是在求一个方法能够一笔画出所有边吧?
小Hi:没错,这就是一笔画问题,不过它更正式的名字叫做欧拉路问题。其定义是
给定无孤立结点图G,若存在一条路,经过图中每边一次且仅一次,该条路称为欧拉路。
小Ho:既然有名字,那就证明这东西有解咯?
小Hi:没错,欧拉路是有判定条件的:一个无向图存在欧拉路当且仅当该图是连通的且有且只有2个点的度数是奇数,此时这两个点只能作为欧拉路径的起点和终点。
若图中没有奇数度的点,那么起点和终点一定是同一个点,这样的欧拉路叫做欧拉回路
对于任意一个点来说,从其他点到它的次数和从它到其他点的次数必然是相等的,否则就会出现出去次数和进入次数不同。若进入次数多,则该点位终点,若出去次数多则该点为起点。
对于一个无向图来说,进入和出去的次数恰好反映在度的数量上。所以奇数度的点至多只能有2个。
严格的证明的话:
若图G连通,有零个或两个奇数度结点,我们总有如下方法构造一条欧拉路:
- 若有两个奇数度结点,则从其中的一个结点开始构造一条迹,即从v[0]出发经关联边e[1]“进入”v[1],若v[1]的度数为偶数,则必可由v[1]再经关联边e[2]进入v[2],如此进行下去,每边仅取一次。由于G是连通的,故必可到达另一奇数度结点停下,得到一条迹L:v[0]-e[1]-v[1]-e[2]…v[i]-e[i+1]…v[k]。若G中没有奇数度结点则从任一结点v[0]出发,用上述方法必可回到结点v[0],得到上述一条闭迹L1。
- 若L1通过了G的所有边,则L1就是欧拉路。
- 若G中去掉L1后得到子图G′,则G′中每个结点度数为偶数,因为原来的图是连通的,故L1与G′至少有一个结点v[i]重合,在G′中由v[i]出发重复第一步的方法,得到闭迹L2。
- 当L1与L2组合在一起,如果恰是G,则即得欧拉路,否则重复第三步可得到闭迹L3,以此类推直到得到一条经过图G中所有边的欧拉路。
不妨看看前面的例子:
对于这个图来说,编号为4,5的点度数为奇数,其他为偶数。根据上面的性质,我们知道起点和终点一定是4、5节点。我们先从4开始随便画一条边直到无路可走:
在这一步中我们连接了4-5-6-3-2-5。根据欧拉路的构造,我们得到了L1。因为L1并没有走过所有的边,所以我们执行步骤3,可以发现对于4和2都是与子图G‘重合的点,在子图上我们可以得到L2(2-4-1-2):
L1和L2合并就构成了欧拉路。
小Ho:既然有这个性质,那么我只需要计算每个点的度数就能知道能否走过所有的边了。
小Hi:没错,但是别忘了最重要的一点,需要整个图是连通的才行。
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 vector<int> father; 5 vector<int> degree; 6 int N, M; 7 int u, v; 8 9 int findFather(int x) { 10 while (x != father[x]) x = father[x]; 11 return x; 12 } 13 14 bool isOK() { 15 int cnt = 0; 16 for (int i = 1; i <= N; ++i) if (father[i] == i) ++cnt; 17 if (cnt != 1) return false; 18 cnt = 0; 19 for (int i = 1; i <= N; ++i) if (degree[i] & 1) { 20 ++cnt; 21 if (cnt > 2) return false; 22 } 23 return true; 24 } 25 26 int main() { 27 while (cin >> N >> M) { 28 father.resize(N + 1); 29 degree.resize(N + 1); 30 for (int i = 1; i <= N; ++i) father[i] = i; 31 for (int i = 0; i < M; ++i) { 32 cin >> u >> v; 33 ++degree[u]; 34 ++degree[v]; 35 int fu = findFather(u); 36 int fv = findFather(v); 37 if (fu != fv) { 38 if (fu > fv) father[fu] = fv; 39 else father[fv] = fu; 40 } 41 } 42 if (isOK()) cout << "Full" << endl; 43 else cout << "Part" << endl; 44 } 45 return 0; 46 }