Java根据余弦定理计算文本相似度

项目中需要算2个字符串的相似度,是根据余弦相似性算的,下面具体介绍一下:

余弦相似度计算

余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。

我们知道,对于两个向量,如果他们之间的夹角越小,那么我们认为这两个向量是越相似的。余弦相似性就是利用了这个理论思想。它通过计算两个向量的夹角的余弦值来衡量向量之间的相似度值。余弦相似性推导公式如下:

public class Cosine {

    public static double getSimilarity(String doc1, String doc2) {
        if (doc1 != null && doc1.trim().length() > 0 && doc2 != null&& doc2.trim().length() > 0) {

            Map<Integer, int[]> AlgorithmMap = new HashMap<Integer, int[]>();

            //将两个字符串中的中文字符以及出现的总数封装到,AlgorithmMap中
            for (int i = 0; i < doc1.length(); i++) {
                char d1 = doc1.charAt(i);
                if(isHanZi(d1)){//标点和数字不处理
                    int charIndex = getGB2312Id(d1);//保存字符对应的GB2312编码
                    if(charIndex != -1){
                        int[] fq = AlgorithmMap.get(charIndex);
                        if(fq != null && fq.length == 2){
                            fq[0]++;//已有该字符,加1
                        }else {
                            fq = new int[2];
                            fq[0] = 1;
                            fq[1] = 0;
                            AlgorithmMap.put(charIndex, fq);//新增字符入map
                        }
                    }
                }
            }

            for (int i = 0; i < doc2.length(); i++) {
                char d2 = doc2.charAt(i);
                if(isHanZi(d2)){
                    int charIndex = getGB2312Id(d2);
                    if(charIndex != -1){
                        int[] fq = AlgorithmMap.get(charIndex);
                        if(fq != null && fq.length == 2){
                            fq[1]++;
                        }else {
                            fq = new int[2];
                            fq[0] = 0;
                            fq[1] = 1;
                            AlgorithmMap.put(charIndex, fq);
                        }
                    }
                }
            }

            Iterator<Integer> iterator = AlgorithmMap.keySet().iterator();
            double sqdoc1 = 0;
            double sqdoc2 = 0;
            double denominator = 0;
            while(iterator.hasNext()){
                int[] c = AlgorithmMap.get(iterator.next());
                denominator += c[0]*c[1];
                sqdoc1 += c[0]*c[0];
                sqdoc2 += c[1]*c[1];
            }

            return denominator / Math.sqrt(sqdoc1*sqdoc2);//余弦计算
        } else {
            throw new NullPointerException(" the Document is null or have not cahrs!!");
        }
    }

    public static boolean isHanZi(char ch) {
        // 判断是否汉字
        return (ch >= 0x4E00 && ch <= 0x9FA5);
        /*if (ch >= 0x4E00 && ch <= 0x9FA5) {//汉字
            return true;
        }else{
            String str = "" + ch;
            boolean isNum = str.matches("[0-9]+");
            return isNum;
        }*/
        /*if(Character.isLetterOrDigit(ch)){
            String str = "" + ch;
            if (str.matches("[0-9a-zA-Z\\u4e00-\\u9fa5]+")){//非乱码
                return true;
            }else return false;
        }else return false;*/
    }

    /**
     * 根据输入的Unicode字符,获取它的GB2312编码或者ascii编码,
     *
     * @param ch 输入的GB2312中文字符或者ASCII字符(128个)
     * @return ch在GB2312中的位置,-1表示该字符不认识
     */
    public static short getGB2312Id(char ch) {
        try {
            byte[] buffer = Character.toString(ch).getBytes("GB2312");
            if (buffer.length != 2) {
                // 正常情况下buffer应该是两个字节,否则说明ch不属于GB2312编码,故返回‘?‘,此时说明不认识该字符
                return -1;
            }
            int b0 = (int) (buffer[0] & 0x0FF) - 161; // 编码从A1开始,因此减去0xA1=161
            int b1 = (int) (buffer[1] & 0x0FF) - 161;
            return (short) (b0 * 94 + b1);// 第一个字符和最后一个字符没有汉字,因此每个区只收16*6-2=94个汉字
        } catch (UnsupportedEncodingException e) {
            e.printStackTrace();
        }
        return -1;
    }

    public static void main(String[] args) {
        String str1="担保人姓名";
        String str2="个人法定名称";
        long start=System.currentTimeMillis();
        double Similarity=Cosine.getSimilarity(str1, str2);
        System.out.println("用时:"+(System.currentTimeMillis()-start));
        System.out.println(Similarity);
    }

}

原文地址:https://www.cnblogs.com/dalianpai/p/12084210.html

时间: 2024-10-08 04:27:55

Java根据余弦定理计算文本相似度的相关文章

向量空间模型(VSM)计算文本相似度

1.定义 向量空间模型是一个把文本表示为标引项(Index Term)向量的代数模型,原型系统SMART*. 向量空间模型的定义很简单,文档d,查询q都用向量来表示. 查询和文档都可转化成term及其权重组成的向量表示,都可以看成空间中的点.向量之间通过距离计算得到查询和每个文档的相似度. 我们在向量空间模型中假设term是相互独立互不影响的. 2.模型构建 VSM向量空间模型构建的关键在于三点: 1.标引项term的选择 2.权重计算(Term Weighting):即计算每篇文档中每个ter

利用word分词来计算文本相似度

word分词提供了两种文本相似度计算方式: 方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度 实现类:org.apdplat.word.analysis.CosineTextSimilarity 用法如下: String text1 = "我爱学习"; String text2 = "我爱读书"; String text3 = "他是黑客"; TextSimilarity textSimilarity = new CosineT

利用余弦定理计算文本的相似度

#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import jieba.analyse from math import sqrt class Similarity(): def __init__(self, target1, target2, topK=10): self.target1 = target1 self.target2 = target2 self.topK = topK

基于word分词提供的文本相似度算法来实现通用的网页相似度检测

实现代码:基于word分词提供的文本相似度算法来实现通用的网页相似度检测 运行结果: 检查的博文数:128 1.检查博文:192本软件著作用词分析(五)用词最复杂99级,相似度分值:Simple=0.968589 Cosine=0.955598 EditDistance=0.916884 EuclideanDistance=0.00825 ManhattanDistance=0.001209 Jaccard=0.859838 JaroDistance=0.824469 JaroWinklerDi

java文本相似度计算(Levenshtein Distance算法(中文翻译:编辑距离算法))----代码和详解

算法代码实现: package com.util; public class SimFeatureUtil { private static int min(int one, int two, int three) { int min = one; if (two < min) { min = two; } if (three < min) { min = three; } return min; } public static int ld(String str1, String str2)

文本相似度计算基本方法小结

在计算文本相似项发现方面,有以下一些可参考的方法.这些概念和方法会帮助我们开拓思路. 相似度计算方面 Jaccard相似度:集合之间的Jaccard相似度等于交集大小与并集大小的比例.适合的应用包括文档文本相似度以及顾客购物习惯的相似度计算等. Shingling:k-shingle是指文档中连续出现的任意k个字符.如果将文档表示成其k-shingle集合,那么就可以基于集合之间的 Jaccard相似度来计算文档之间的文本相似度.有时,将shingle哈希成更短的位串非常有用,可以基于这些哈希值

文本相似度判定

刘 勇   Email:[email protected] 简介 针对文本相似判定,本文提供余弦相似度和SimHash两种算法,并根据实际项目遇到的一些问题,给出相应的解决方法.经过实际测试表明:余弦相似度算法适合于短文本,而SimHash算法适合于长文本,并且能应用于大数据环境中. 余弦相似度 原理 余弦定理:                   图-1 余弦定理图示 性质: 余弦值的范围在[-1,1]之间,值越趋近于1,代表两个向量的方向越趋近于0°,他们的方向更加一致,相应的相似度也越高.

【NLP】Python实例:基于文本相似度对申报项目进行查重设计

Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起到一定纠正作用.单位主要针对科技项目申报审核,传统的方式人力物力比较大,且伴随季度性的繁重工作,效率不高.基于此,单位觉得开发一款可以达到实用的智能查重系统.遍及网络文献,终未得到有价值的参考资料,这个也是自然.首先类似知网,paperpass这样的商业公司其毕业申报专利并进行保密,其他科研单位因发

.NET下文本相似度算法余弦定理和SimHash浅析及应用

在数据采集及大数据处理的时候,数据排重.相似度计算是很重要的一个环节,由此引入相似度计算算法.常用的方法有几种:最长公共子串(基于词条空间).最长公共子序列(基于权值空间.词条空间).最少编辑距离法(基于词条空间).汉明距离(基于权值空间).余弦值(基于权值空间)等,今天我们着重介绍最后两种方式. 余弦相似性 原理:首先我们先把两段文本分词,列出来所有单词,其次我们计算每个词语的词频,最后把词语转换为向量,这样我们就只需要计算两个向量的相似程度. 我们简单表述如下 文本1:我/爱/北京/天安门/