[题解] Luogu P4721 【模板】分治 FFT

分治FFT的板子为什么要求逆呢



传送门

这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算出左区间里的\(f\)对右边的贡献,然后再算右边的就好了。

手玩一组样例吧:g=[0,3,1,2](默认\(g[0] = 0\))

一开始,只有f[0]=1

f: [1 0|0 0]

然后我们从中间分开来,先算左边的

f: [1|0|0 0]

然后在分下去我们会找到\(f[0]\),就拿这一段和\(g\)数组卷积,得到\(f[1]\)

f: [1 3|0 0]

现在我们已经算完了左半段,拿\([1,3]\)和\([0,3,1,2]\)卷积,会得到这个序列\([0,3,10,5,6]\),

从$10 $开始,把值累加到右半段上

f: [1 3|10|5]

再对右半段分治,然后我们会访问到\(10\),发现只有一个数,回溯。这样我们有确定了一个左半段,再拿\([10]\)和\([0 ,3 ,1 ,2]\)卷积,就是\([0,30,10,20]\),然后把\(30\)开始的值累加到右半段上(\(f[3]\)开始的)

f: [1 3 10 35]

然后就做完了。

好我们来玩一下样例2!

做卷积的话可以\(NTT\),还有就是在开始就可以把原序列补成一个长度为\(2^k\)的数组,这样就避免了一些特殊情况。

分治的时候具体细节的话可以看代码

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int N=300010,P=998244353,G=3,IG=(P+1)/G;
inline int fpow(int a,int b){
    int ret=1; for (;b;b>>=1,a=1ll*a*a%P)
        if(b&1)ret=1ll*ret*a%P;
    return ret;
}
inline int add(int x,int y){return x+y>=P?x+y-P:x+y;}
inline int sub(int x,int y){return x-y<0?x-y+P:x-y;}
namespace Poly{
    int rev[N];
    void init(int limit){
        for (int i=0;i<limit;i++) rev[i]=rev[i>>1]>>1|((i&1)?limit>>1:0);
    }
    void ntt(int *f,int n,int flg){
        for (int i=0;i<n;i++)
            if(rev[i]<i) swap(f[i],f[rev[i]]);
        for (int len=2,k=1;len<=n;len<<=1,k<<=1){
            int wn=fpow(flg==1?G:IG,(P-1)/len);
            for (int i=0;i<n;i+=len){
                for (int j=i,w=1;j<i+k;j++,w=1ll*w*wn%P){
                    int tmp=1ll*w*f[j+k]%P;
                    f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
                }
            }
        }
    }
}
using Poly::ntt;
int ans[N],f[N],g[N],a[N],n;
void solve(int l,int r){
    if (l+1>=r) return;
    int mid=l+((r-l)>>1);
    solve(l,mid);
    int len=r-l;
    Poly::init(len);
    for (int i=0;i<len;i++) g[i]=a[i];
    for (int i=l;i<mid;i++) f[i-l]=ans[i];
    for (int i=mid;i<r;i++) f[i-l]=0;
    ntt(f,len,1),ntt(g,len,1);
    for (int i=0;i<len;i++) f[i]=1ll*f[i]*g[i]%P;
    ntt(f,len,-1); int inv=fpow(len,P-2);
    for (int i=mid;i<r;i++) ans[i]=add(ans[i],1ll*f[i-l]*inv%P);
    solve(mid,r); // 注意一定要先把左半段的贡献加上去再算右边
}
int main(){
    scanf("%d",&n);
    for (int i=1;i<n;i++) scanf("%d",&a[i]);
    int limit=1; while(limit<n)limit<<=1; // 补项
    ans[0]=1,solve(0,limit);
    for (int i=0;i<n;i++)printf("%d ",ans[i]);
    return 0;
}

原文地址:https://www.cnblogs.com/wxq1229/p/12237490.html

时间: 2024-08-13 12:48:54

[题解] Luogu P4721 【模板】分治 FFT的相关文章

[题解] Luogu P4245 [模板]任意模数NTT

三模NTT 不会... 都0202年了,还有人写三模NTT啊... 讲一个好写点的做法吧: 首先取一个阀值\(w\),然后把多项式的每个系数写成\(aw + c(c < w)\)的形式,换句话说把多项式\(f(x)\)写成两个多项式相加的形式: \[ f(x) = wf_0(x) + f_1(x) \] 这样在这道题中取\(W = 2^{15}\)就可以避免爆long long了. 乘起来的话就是 \[ f \cdot g = (w f_0 + f_1)(wg_0 + g_1) = (f_0 g

分治FFT模板

题目链接:https://www.luogu.org/problemnew/show/P4721 总结了一下蒟蒻FFT/NTT容易写错的地方: ? 1.rev数组求错. ? 2.cdq注意顺序:先递归左, 处理左对右的影响,再递归右.(注意!这需要考虑到分治fft的原理!) ? 3.初始a数组忘了取模等各种忘取模. ? 4.NTT第二层循环i+=(1<<j)而不是i+=j ? 5.y=gnk*a[k+j]而不是a[k+j]. 接下来是AC代码 (打//标志的是曾经与现在本蒟蒻FFT写错的地方)

【模板】分治 FFT

题目大意:给定长度为 \(n - 1\) 的序列 \(g\),求 \(f\) 序列,其中 \(f\) 为 \[ f[i]=\sum_{j=1}^{i} f[i-j] g[j] \] 学会了分治 \(fft\). 发现这个式子中也含有卷积,但是这是一个递推式,即:\(f\) 数组是未知的. 考虑分治策略,即:假设已经算出区间 \([l, mid]\) 的 \(f\) 值,现在要计算区间 \([mid + 1, r]\) 的 \(f\). 考虑左半部分对右半部分的贡献,对于 \[x \in [mid

2017 3 11 分治FFT

考试一道题的递推式为$$f[i]=\sum_{j=1}^{i} j^k \times (i-1)! \times \frac{f[i-j]}{(i-j)!}$$这显然是一个卷积的形式,但$f$需要由自己卷过来(我也不知到怎么说),以前只会生成函数的做法,但这题好像做不了(谁教教我怎么做),于是无奈的写了一发暴力,看题解发现是分治FFT.分治每层用$f[l]-f[mid]$与$a[1]-a[r-l]$做NTT.这样显然每个$f[l]-f[mid]$对$f[mid+1]-f[r]$的贡献都考虑到了.

【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT

题目描述 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使得 a_i  opt b_j=c . 输入 第一行是一个整数 T (1≤T≤10) ,表示测试数据的组数. 对于每组测试数据: 第一行是三个整数 n,m,q (1≤n,m,q≤50000) . 第二行是 n 个整数,表示 a_1,a_2,?,a_n (0≤a_1,a_2,?,a_n≤50000) . 第三行是 m

HDU Shell Necklace CDQ分治+FFT

Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose

【BZOJ3451】Tyvj1953 Normal 点分治+FFT+期望

[BZOJ3451]Tyvj1953 Normal Description 某天WJMZBMR学习了一个神奇的算法:树的点分治!这个算法的核心是这样的:消耗时间=0Solve(树 a) 消耗时间 += a 的 大小 如果 a 中 只有 1 个点  退出 否则在a中选一个点x,在a中删除点x 那么a变成了几个小一点的树,对每个小树递归调用Solve我们注意到的这个算法的时间复杂度跟选择的点x是密切相关的.如果x是树的重心,那么时间复杂度就是O(nlogn)但是由于WJMZBMR比较傻逼,他决定随机

【XSY2166】Hope 分治 FFT

题目描述 对于一个\(1\)到\(n\)的排列\(a_1,a_2,a_3,\ldots,a_n\),我们定义这个排列的\(P\)值和\(Q\)值: 对于每个\(a_i\),如果存在一个最小的\(j\)使得\(i<j\)且\(a_i<a_j\),那么将\(a_i\)和\(a_j\)连一条无向边.于是就得到一幅图.计算这幅图每个联通块的大小,将它们相乘,得到\(P\).记\(Q=P^k\). 对于\(1\)到\(n\)的所有排列,我们想知道它们的\(Q\)值之和.由于答案可能很大,请将答案对\(9

【XSY2744】信仰圣光 分治FFT 多项式exp 容斥原理

题目描述 有一个\(n\)个元素的置换,你要选择\(k\)个元素,问有多少种方案满足:对于每个轮换,你都选择了其中的一个元素. 对\(998244353\)取模. \(k\leq n\leq 152501\) 题解 吐槽 为什么一道FFT题要把\(n\)设为\(150000\)? 解法一 先把轮换拆出来. 直接DP. 设\(f_{i,j}\)为前\(i\)个轮换选择了\(j\)个元素,且每个轮换都选择了至少一个元素的方案数. \[ f_{i,j}=\sum_{k=1}^{a_i}f_{i-1,j